• Title/Summary/Keyword: Thin-walled Structure

Search Result 136, Processing Time 0.02 seconds

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

수치해석에 의한 심수 탱크구조물의 진동에 관한 연구 (Numerical Analysis of Vibration Characteristics in Deep Water Tank)

  • 배성용
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.791-797
    • /
    • 2003
  • A liquid storage rectangular tank structures are used In many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks In contact with Inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics In deep water tank are investigated and discussed.

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

수치해석에 의한 심수 탱크구조물의 진동에 관한 연구 (Numerical Analysis of Vibration Characteristics in Deep Water Tank)

  • 배성용;홍봉기;배동명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석 (A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES)

  • 손병철;곽호상;이상현
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

부가질량 효과와 호흡모드를 고려한 구조-유체연성진동해석 (The Effect of Added Mass of Water and Breath Mode in Fluid-Structure Coupled Vibration Analysis)

  • 배성용
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.71-76
    • /
    • 2005
  • Marine structures are often in contact with inner or outer fluid as stern, ballast and oil tanks. The effect of interaction between fluid and structure has to be taken into consideration when we estimate the dynamic response of the structure appropriately. Fatigue damages can also be sometimes observed in these tanks which seem to be caused by resonance. Thin walled tank structures in ships which are in contact with water and located near engine or propeller where vibration characteristics are strongly affected by the added mass of containing water. Therefore it is essentially important to estimate the added mass effect to predict vibration characteristics of tank structures. But it is difficult to estimate exactly the magnitude of the added mass because this is a fluid-structure interaction problem and is affected by the free surface, vibration modes of structural panels and the depth of water. I have developed a numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present study, the effect of added mass of containing water, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed. Especially a natural frequencies by the fluid interaction between 2 panels and a breath mode of the water tank are focused on.

  • PDF

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

Investigation of torsion, warping and distortion of large container ships

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.73-93
    • /
    • 2011
  • Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.