• Title/Summary/Keyword: Thin-section

Search Result 599, Processing Time 0.023 seconds

On the Strength Analysis of the Stiffener with Asymmetric Cross Section (비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析))

  • S.J.,Yim;Y.S.,Yang;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF

On the evaluation of critical lateral buckling loads of prismatic steel beams

  • Aydin, R.;Gunaydin, A.;Kirac, N.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.603-621
    • /
    • 2015
  • In this study, theoretical models and design procedures of the behavior of thin-walled simply supported steel beams with an open cross section under a large torsional effect are presented. I-sections were chosen as the cross section types. Firstly, the widely used differential equations for the lateral buckling for the pure bending moment effect in a beam element were adopted for the various moment distributions along the span of the beam. This solution was obtained for both mono-symmetric and bisymmetric sections. The buckling loads were then obtained by using the energy method. When using the energy method to solve the problem, it is possible to locate the load not only on the shear center but also at several points of the section depth. Buckling loads were obtained for six different load types. Results obtained for different load and cross section types were checked with ABAQUS software and compared with several standard rules.

Studies on the Thin Rubber Coated Fabrics. (Part. 1) Physical Properties of the Coated Fabrics of Natural Rubber and of Butadiene-Styrene Rubber (박막(薄膜) Rubber Coated Fabrics에 관(關)한 연구(硏究) (제1보(第1報)) 천연(天然) 및 합성(合成)고무를 각종(各種) 원반(原反)에 도포(塗布)했을 때의 물리적성능(物理的性能)에 대(對)하여)

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Sook-Ja;Rhim, Kwang-Kew
    • Elastomers and Composites
    • /
    • v.1 no.1
    • /
    • pp.41-48
    • /
    • 1966
  • The physical properties of rubber coated fabrics, treated by means of spreading and topping process were studied. 1. The tearing strength of the rubber coated fabrics has shown decreasing tendency in comparison with fabric itself 2. Generally, the tearing strength is inversely proportional to the adhesion. 3. The value of hydrostatic pressure is in proportion to the density and tensile strength of the fabrics. 4. The topping process shows greater difference in adhesion initial and after water immersion than spreading process.

  • PDF

Direct strength method for high strength steel welded section columns

  • Choi, Jong Yoon;Kwon, Young Bong
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.509-526
    • /
    • 2018
  • The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • Giunta, Gaetano;Belouettar, Salim;Biscani, Fabio;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.253-271
    • /
    • 2014
  • A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.

Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory (Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석)

  • 권효찬;박영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.