• 제목/요약/키워드: Thin-film solar cells

검색결과 539건 처리시간 0.029초

굽힘 시험에 의한 플렉시블 CZTS 태양전지의 I-V 특성 변화에 관한 연구 (Change of I-V Properties of Flexible CZTS Solar Cell Through Mechanical Bending Test)

  • 김성준;김제하
    • 한국융합학회논문지
    • /
    • 제13권3호
    • /
    • pp.197-202
    • /
    • 2022
  • CZTS 태양전지는 Cu, Zn, Sn, Se, S으로 구성된 흡수층을 사용하는 박막 태양전지로, In, Ga이 사용되는 CIGS 태양전지보다 저렴하며 Pb, Cd이 사용된 페로브스카이트, CdTe 태양전지보다 친환경적이다. 본 연구에서 우리는 유연기판인 Mo foil 위에 제작된 유연 CZTS 태양전지를 지정된 곡률만큼 휘게 하는 bending test를 진행하였다. 태양전지에 압축응력이 가해지는 inner benidng과 인장응력이 가해지는 outer bending의 방향에서 실험은 진행되었으며, 50 mmR의 곡률 반경으로 진행된 1,000 회의 굽힘 횟수 동안 태양전지의 효율은 최고 12.7%까지 감소하였으며, 두 방향 모두에서 효율 감소의 가장 큰 원인은 병렬저항의 큰 감소로 나타났다.

기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석 (Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances)

  • 송준용;정대영;김찬석;박상현;조준식;송진수;왕진석;이정철
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

Microstructure Characterization of TiO2 Photoelectrodes for dyesensitized Solar Cell using Statistical Design of Experiments

  • Lee, Sung-Joon;Cho, Il-Hwan;Kim, Hyun-Wook;Hong, Sang-Jeen;Lee, Hun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.177-181
    • /
    • 2009
  • Employing statistical design of experiments, we have performed studies on the characterization of electrodes using $TiO_2$ and process variables in the fabrication process of nanocrystalline dye sensitized solar cell. Systematic experiment to identify the effects of process variables on cell's efficiency has based on broad-band absorption of light by tailor made organometallic dye molecules dispersed on a high surface of $TiO_2$. Employing statistical design of experiment on $TiO_2$ photoelectrode forming process, structural characterization of electrodes and process variable have been investigated. Through the statistical analysis we have found that the particle size of $TiO_2$ and the amount of PEG/PEO are significantly affecting on the cell efficiency. In addition, a significant amount of interaction exists between the particle size and the amount of PEG/PEO.

태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석 (Copper Sulfide Nanowires for Solar Cells)

  • 임영석;강윤묵;김원목;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

Fabrication of wide-bandgap β-Cu(In,Ga)3Se5 thin films and their application to solar cells

  • Kim, Ji Hye;Shin, Young Min;Kim, Seung Tae;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.38-43
    • /
    • 2013
  • $Cu(In,Ga)_3Se_5$ is a candidate material for the top cell of $Cu(In,Ga)Se_2$ tandem cells. This phase is often found at the surface of the $Cu(In,Ga)Se_2$ film during $Cu(In,Ga)Se_2$ cell fabrication, and plays a positive role in $Cu(In,Ga)Se_2$ cell performance. However, the exact properties of the $Cu(In,Ga)_3Se_5$ film have not been extensively studied yet. In this work, $Cu(In,Ga)_3Se_5$ films were fabricated on Mo-coated soda-lime glass substrates by a three-stage co-evaporation process. The Cu content in the film was controlled by varying the deposition time of each stage. X-ray diffraction and Raman spectroscopy analyses showed that, even though the stoichiometric Cu/(In+Ga) ratio is 0.25, $Cu(In,Ga)_3Se_5$ is easily formed in a wide range of Cu content as long as the Cu/(In+Ga) ratio is held below 0.5. The optical band gap of $Cu_{0.3}(In_{0.65}Ga_{0.35})_3Se_5$ composition was found to be 1.35eV. As the Cu/(In+Ga) ratio was decreased further below 0.5, the grain size became smaller and the band gap increased. Unlike the $Cu(In,Ga)Se_2$ solar cell, an external supply of Na with $Na_2S$ deposition further increased the cell efficiency of the $Cu(In,Ga)_3Se_5$ solar cell, indicating that more Na is necessary, in addition to the Na supply from the soda lime glass, to suppress deep level defects in the $Cu(In,Ga)_3Se_5$ film. The cell efficiency of $CdS/Cu(In,Ga)_3Se_5$ was improved from 8.8 to 11.2% by incorporating Na with $Na_2S$ deposition on the CIGS film. The fill factor was significantly improved by the Na incorporation, due to a decrease of deep-level defects.

페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석 (Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions)

  • 조현아;이승민;노준홍
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과 (Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current)

  • 연창봉;이유정;임정욱;윤선진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

이중주입 초음파분무법에 의한 메틸암모늄 할로젠화 납 페로브스카이트 박막의 제조 (Preparation of methylammonium lead halide perovskite thin films by dual feed ultrasonic spray method)

  • 김록윤;김태희;박경봉
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.6-11
    • /
    • 2019
  • 본 연구에서는 페로브스카이트 태양전지의 광흡수체로 사용되는 메틸암모늄 할로젠화 납(methylammonium lead halide, $MAPbX_3$, X = I, Br) 페로브스카이트(perovskite) 박막을 이중주입 초음파분무법을 이용하여 제조하였다. 이중주입 초음파 분무법을 통해 $60^{\circ}C$ 이하의 기판온도에서 분무한 후, $75^{\circ}C$에서 5분간 최종열처리 후 $MAPbI_3$ 단일상을 제조할 수 있었다. $80^{\circ}C$ 이상의 온도에서 분무 증착 시에는 페로브스카이트 상의 분해로 인해 구형의 결정립이 막대형태의 프렉탈(fractal) 구조로 변화되었다. $MAPbI_3$ 용액과 $MAPbIBr_2$ 용액의 이중주입을 통해, $MAPbI_3$ 박막에 비해 높은 $100^{\circ}C$의 열처리로 $MAPbI_{3-x}Br_x$ 박막을 제조할 수 있었다.

비정질 실리콘의 부분적 알루미늄 유도 결정화 공정에서의 급속 열처리 적용 가능성 (Application of rapid thermal annealing process to the aluminum induced crystallization of amorphous silicon thin film)

  • 황지현;양수원;김영관
    • 한국결정성장학회지
    • /
    • 제29권2호
    • /
    • pp.50-53
    • /
    • 2019
  • 박막 태양전지에 주로 적용되는 다결정 규소층을 AIC(Aluminum Induced Crystallization) 공정을 이용하여 제조하였다. 결정립의 확대를 위하여 selective diffusion barrier 사용하였다. 이 diffusion barrier는 $Al_2O_3$ 막을 사용하였다. 공정시간의 단축을 위하여 열처리는 RTA(Rapid Thermal Annealing) 공정으로 진행하였다. 비정질 실리콘의 결정화는 XRD 측정을 통해 분석했다. 그 결과 $500^{\circ}C$에서 결정화되었으며, 결정 크기는 $15.9{\mu}m$로 계산되었다.