• Title/Summary/Keyword: Thin-film manufacturing process

Search Result 171, Processing Time 0.034 seconds

Self-patterning Technique of Photosensitive La0.5Sr0.5CoO3 Electrode on Ferroelectric Sr0.9Bi2.1Ta2O9 Thin Films

  • Lim, Jong-Chun;Lim, Tae-Young;Auh, Keun-Ho;Park, Won-Kyu;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • $La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrodes were prepared on ferroelectric $Sr_{0.9}Bi_{2.1}Ta_2O_9$(SBT) thin films by spin coating method using photosensitive sol-gel solution. Self-patterning technique of photosensitive sol-gel solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. Lanthanum(III) 2-methoxyethoxide, Stronitium diethoxide. Cobalu(II)2-methoxyethoxide were used as starting materials for LSCO electrode. UV irradiation on LSCO thin films lead to decrease solubility by M-O-M bond formation and the solubility difference allows us to obtain self-patternine. There was little composition change of the LSCO thin films between before leaching and after leaching in 2-methoxyethanol. The lowest resistivity of LSCO thin films deposited on $SiO_2$/Si substrate was $1.1{\times}10^{-2}{\Omega}cm$ when the thin film was ennealed at $740^{\circ}C$. The values of Pr/Ps and 2Pr of LSCO/SBT/Pt capacitor on the applied voltage of 5V were 0.51, 8.89 ${\mu}C/cm^2$, respectively.

A Study on the Bonding Performance of COG Bonding Process (COG 본딩의 접합 특성에 관한 연구)

  • Choi, Young-Jae;Nam, Sung-Ho;Kim, Kyeong-Tae;Yang, Keun-Hyuk;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

6 Mask LTPS CMOS Technology for AMLCD Application

  • Park, Soo-Jeong;Lee, Seok-Woo;Baek, Myoung-Kee;Yoo, Yong-Su;Kim, Chang-Yeon;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1071-1074
    • /
    • 2007
  • 6Mask CMOS process in low temperature polycrystalline silicon thin film transistors (poly-Si TFTs) has been developed and verified by manufacturing a 6Mask CMOS AMLCD panel. The novel 6Mask CMOS process is realized by eliminating the storage mask, gate mask and via open mask of conventional structure.

  • PDF

Barix Multilayer Barriers; a key enabler for protecting OLED displays and flexible organic devices

  • Moro, L.L.M.;Rutherford, N.;Chu, X.;Visser, R.J.;Graf, G.C.;Gross, M.E.;Bennet, W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.616-619
    • /
    • 2005
  • OLED display are extremely sensitive to water and oxygen. Developing a thin film encapsulation for this technology has for a long time been elusive. Vitex has developed a multilayer barrier consisting of alternating inorganic and organic layers which can meet the requirements for a successful protection for such displays. In this paper we will discuss the basic process, the model, the results on top and bottom emission OLED displays as well as the application of Barix layers on plastic to create flexible OLED displays. We will show that for displays all the requirement for the telecommunication industry can be met and that the we can scale up to a mass manufacturing process.

  • PDF

Lubrication effect of slider bearing with wavy surface (파형이 있는 슬라이더 베어링의 윤활효과)

  • Wang, Il-Gun;Chin, Do-Hun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • The influence of sine wave striated surface roughness on load carrying capacity of a bearing is studied for thin film effect of slider bearing. A Reynolds equation appropriate for slider bearing is used in this paper for analysis and it is discussed using finite difference method of central difference scheme. For a slider bearing with sine wave simple roughness form, several parameters such as pressure, load capacity and shear stress of the bearing can be obtained and also this results can be stored in sequential data file for latter analysis. After all, their distribution can be displayed and analyzed easily by using the matlab GUI technique. The parameters such as amplitude, number of waviness and slope of the surface are used for discussing the load carrying capacity of the rectangular bearing. The results reported in this paper should be applied to the other slider bearing such as rectangular or round embossed surface of slider bearing.

Lubrication Behavior of Slider Bearing with Square Pocket Surface (사각 포켓형상 표면을 갖는 슬라이더 베어링의 윤활거동)

  • Chin, Do-Hun;Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.119-125
    • /
    • 2017
  • In this paper, the characteristics and load carrying capacity of square pocket surfaces on a slider bearing are discussed for the thin film effect by the square pocket slider bearing. To study the lubrication, a Reynolds equation is used in this paper for the analysis of the slider bearing characteristics with square pocket surfaces. For numerical analysis, the central differencing scheme finite difference method is used. In a slider bearing with square pocket surfaces, the simulation dependent parameters such as pressure and load carrying capacity of the bearing can be acquired from the independent parameters, the slope of the slider bearing and number of pockets on the upper slider. These results can be acquired by the programmed softwar,e and they can be analyzed and stored in a sequential data file for later analysis. Furthermore, their pressure and load capacity distribution can be displayed easily by using the developed program with the Matlab GUI.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF