• 제목/요약/키워드: Thin-Walled Tubular Specimen

검색결과 10건 처리시간 0.025초

Interlaminar Normal Stress Effects in Cylindrical Tubular Specimens of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.406-409
    • /
    • 2017
  • The thin-walled cylindrical tubes are frequently used for the evaluation of fatigue property of composites. But the curvature of the tubular specimen induces interlaminar normal stress which may affect the fatigue property. In this paper interlaminar normal stress effect on the fatigue behaviour of thin-walled graphite/epoxy tubes $[{\pm}45]_s$ composites was studied experimentally. It was concluded that the interlaminar normal stress induced by the curvature of the cylinder has no discernible effect on the fatigue life. But excessive internal pressure can produce the stiffness increase and this affects the fatigue life of the cylindrical tubular composite.

이상 이축 하중 하에서 구멍 주위에서의 피로 균열 발생 (Fatigue Crack Initiation around a Hole under Out-of-phase Biaxial Loading)

  • 허용학;박휘립;김동진
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1695-1702
    • /
    • 2003
  • Fatigue crack initiation around a hole subjected to biaxial fatigue loads with a phase difference was investigated. Axial and torsional biaxial fatigue loads with different phase differences and biaxiality of 1/√3 were applied to thin-walled tubular specimens. Five phase differences of 0, 45, 90, 145 and 180 degrees were selected. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than 90$^{\circ}$. Whereas directions for tests with phase differences greater than 90$^{\circ}$ got away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than 90. . Furthermore, it was shown that the fatigue initiation life decreased with increment of phase difference for fatigue tests with phase differences less than 90$^{\circ}$, but it increased for tests with phase difference greater than 90$^{\circ}$. The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동 (Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load)

  • 허용학;박휘립;권일범;김진영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

순수 비틀림 하중하에서 열화를 고려한 2상 스데인리스강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of Duplex Stainless Steel with Degradation under Pure Torsional Load)

  • 권재도;박중철
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1897-1904
    • /
    • 2002
  • Monotonic torsional and pure torsional low cycle fatigue(LCF) test with artificial degradation were performed on duplex stainless steel(CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430$^{\circ}C$ for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties(i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life(N$\sub$f/) decreases with degradation of material. The relationship between shear strain amplitude(${\gamma}$$\sub$a/)and N$\sub$f/ was proposed.

2상 주조 스테인리스강의 열화로 인한 2축 피로수명의 변화와 예측 (A Change and Prediction of Biaxial Fatigue Life of Cast Duplex Stainless Steels by Degradation)

  • 권재도;박중철
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.410-418
    • /
    • 2004
  • The multiaxial fatigue test under in-phase and out-of$.$phase load were performed to study what degradation phenomenon affects fatigue life with virgin and 3600 hrs degraded materials. The various kind of fatigue data fur fatigue life prediction were acquired under pure axial and pure torsional load of fully reversal condition. The models which was investigated are: 1) the von Mises equivalent strain range, 2) the critical shear plane approach method of Fatemi-Socie(FS) parameter, 3) the modified Smith-Watson-Topper(SWT) parameter. The result showed that, fatigue life by material degradation are decreased and life prediction which was used the FS parameter is not conservative but the best result.

Cumulative Damage Theory in Fatigue of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • 제28권4호
    • /
    • pp.182-190
    • /
    • 2015
  • The phenomenological evolution laws of damage can be defined either based on residual life or residual strength. The failure of a specimen can be defined immediately after or before fracture. The former is called in this paper by "failure defined by approach I" and the latter "failure defined by approach II." Usually at failure there is a discontinuity of loading variables and, because of this, damage at failure is discontinuous. Therefore the values of damage at failure by two different approaches are not the same. Based on this idea the sequence effects of the phenomenological evolution law of damage given by $dD/dN=g(D)f({\Phi})$ were studied. Thin-walled graphite/epoxy tubes consisting of four of $[{\pm}45]_s$ laminates were used for the experimental study of sequence effects and the effects of mean stress on fatigue life. It was found that the sequence effects in two step uniaxial fatigue for $[{\pm}45]_s$ graphite/epoxy tubular specimen showed that a high-low block loading sequence was less damaging than a low-high one.

CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안 (A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels)

  • 박중철;권재도
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.

이축성과 위상차의 영향을 고려한 이축 하중하에서 구멍 주위에서의 피로 균열 발생 방향 예측 (Prediction of Fatigue Crack Initiation Direction around a Hole under Biaxial Loads Considering Phase Difference and Biaxiality)

  • 허용학;박휘립;김동진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.156-161
    • /
    • 2004
  • To predict the direction of the fatigue crack initiated from a hole under various types of biaxial fatigue loads with different phase difference and biaxiality, fatigue parameters were investigated. Axial and torsional biaxial fatigue loads were selected with the respective combination of five different phase differences of 0, 45, 90, 145 and 180 degrees and five biaxialities of 0, $1/{\sqrt{3}}$, 1, ${\sqrt{3}}$, ${\infty}$. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than $90^{\circ}$. Whereas directions for tests with phase differences greater than $90^{\circ}$ went away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than $90^{\circ}$. With increase of biaxilities, the fatigue crack initiated more apart from the circumferential direction of the specimen. These crack initiation direction were predicted using maximum tangential stress range and maximum shear stress range obtained at far-field and around the hole. Comparing these two stress parameters, The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

  • PDF