• Title/Summary/Keyword: Thin-Walled Cross-Section

Search Result 112, Processing Time 0.029 seconds

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • Giunta, Gaetano;Belouettar, Salim;Biscani, Fabio;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.253-271
    • /
    • 2014
  • A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Imperfections in thin-walled steel profiles with modified cross-sectional shapes - Current state of knowledge and preliminary studies

  • Aleksandra M. Pawlak;Tomasz A. Gorny;Michal Plust;Piotr Paczos;Jakub Kasprzak
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.327-341
    • /
    • 2024
  • This paper is the first in a series of articles dealing with the study and analysis of imperfections in thin-walled, cold-formed steel sections with modified cross-sectional shapes. A study was conducted, using 3D scanning techniques, to determine the most vulnerable geometric imperfections in the profiles. Based on a review of the literature, it has been determined that few researchers are studying thin-walled sections with modified cross-sectional shapes. Each additional bend in the section potentially generates geometric imperfections. Geometric imperfections significantly affect the resistance to loss of stability, which is crucial when analyzing thin-walled structures. In addition, the most critical locations along the length where these imperfections occur were determined. Based on the study, it was found that geometric imperfections cause a reduction in critical load. It should be noted that the tests performed are preliminary studies, based on which a program of further research will be developed. In addition, the article presents the current state of knowledge in the authors' field of interest. The future objective is to ascertain if these imperfections could potentially contribute positively to structural integrity. This enhanced understanding may pave the way for novel methodologies in structural engineering, wherein imperfections are viewed not solely as flaws but also as elements that could enhance the end product.

Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections (폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석)

  • Park, Il-Ju;Jung, Sung-Nam
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, a closed-form analysis has been developed for the transverse shear behavior of thin-walled composite beams with closed cross-sections. The shear flow distributions and cross-section stiffness coefficients are derived analytically by using a mixed beam approach. The theory has been applied to single-celled composite box-beams with elastic couplings. The location of the shear center and the effect of transverse shear deformation on the static behavior of composite beams are investigated in the framework of the analysis. The present results are validated against those of a two-dimensional finite element analysis and a good correlation has been obtained for box-beam cases considered in this study.

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections (폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델)

  • Jung, Sung-Nam;Park, Il-Ju;Lee, Ju-Young;Lee, Jung-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

On the Strength Analysis of the Stiffener with Asymmetric Cross Section (비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析))

  • S.J.,Yim;Y.S.,Yang;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF

A Study on the Correction of the Warping Functions of Composite Thin-Walled Beams with a Chord wise Asymmetric Closed Cross-Section (시위 방향으로 비대칭 폐단면을 가지는 복합재료 얇은 벽 보의 와핑 함수 보정에 관한 연구)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-17
    • /
    • 2018
  • With an aim of considering the warping restraint effect, the results of the comparative study for several cases on the correction of the warping functions for the theoretical analysis of composite thin-walled beams with chord wise asymmetric closed cross-sections are presented in this study. To solve this problem, it is necessary to correct the warping function so as to satisfy the warping equilibrium condition like 1) without moving the position of the pole, 2) with only modifying the shape function using the existing pole, and 3) with moving the position of the pole. The cross-sectional characteristics of the cases were compared with each other. Finally, the cases were compared in order to correct the warping functions. The case 2) was observed to be more speedy and simple in computation compared to others.

Bending and Torsional Behaviors of Thick Composite Channel Beam (두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동)

  • Park, Mi-Jung;Choi, Yong-Jin;Chun, Heung-Jae;Byun, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF