• Title/Summary/Keyword: Thin plastic substrate

Search Result 110, Processing Time 0.039 seconds

Formation of Buffer Layer on Mica for Application to Flexible Thin Film Transistors

  • Oh, Joon-Seok;Lee, Seung-Ryul;Lee, Jin-Ho;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.749-751
    • /
    • 2007
  • A buffer layer consisting of $SiO_x/Ta/Ti$ has been developed in order to overcome the adhesion and stress problems between poly-Si film and mica. Polycrystalline silicon thin film transistor was successfully fabricated on the mica and transferred to a flexible plastic substrate.

  • PDF

The Adhesion of TiN Coatings on Plasma-nitrided Steel (이온 질화층이 TiN 박막의 밀착성에 미치는 영향)

  • Ko, K.M.;Kim, H.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Indium Tin Oxide Thin Films Grown on Polyethersulphone (PES) Substrates by Pulsed-Laser Deposition for Use in Organic Light-Emitting Diodes

  • Kim, Kyung-Hyun;Park, Nae-Man;Kim, Tae-Youb;Cho, Kwan-Sik;Sung, Gun-Yong;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.405-410
    • /
    • 2005
  • High quality indium tin oxide (ITO) thin films were grown by pulse laser deposition (PLD) on flexible polyethersulphone (PES) substrates. The electrical, optical, and surface morphological properties of these films were examined as a function of substrate temperature and oxygen pressure. ITO thin films, deposited by PLD on a PES substrate at room temperature and an oxygen pressure of 15 mTorr, have a low electrical resistivity of $2.9{\times}10^{-4}{\Omega}cm$ and a high optical transmittance of 84 % in the visible range. They were used as the anode in organic light-emitting diodes (OLEDs). The maximum electro luminescence (EL) and current density at 100 $cd/m^2$ were 2500 $cd/m^{2}$ and 2 $mA/m^{2}$, respectively, and the external quantum efficiency of the OLEDs was found to be 2.0 %.

  • PDF

EFFECT OF ION BEAM ASSISTED CLEANING ON ADHESION OF ALUMINIUM TO POLYMER SUBSTRATE OF PC AND PMMA

  • Kwon, Sik-Chol;Lee, Gun-Hwan;Lee, Chuel-Yong;Gob, Han-Bum;Lim, Jun-Seop;Goh, Sung-Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.428-432
    • /
    • 1999
  • As metallic surface has its unique lustrous appearance and optical reflectance in visible range of light, the metallization of plastic surface has been an essential drive toward weight reduction for fuel economy and decorations in transportation industry and has been put into practiced from wet chemical-electrochemial to dry vacuum process in view of an environmental effect. Electron-beam metallization was used in this work with an aim at improving the scratchproof surface hardness of plastic substrate with metallic finish character. Thin film of Al ($1000\AA$) and $SiO_2$($7000\AA$) were metallized on substrate of PC and PMMA and the films were evaluated by pencil test for surface hardness and by cross-cut tape test for adhesion. The ion beam treatment improved around twice as hard as non-treat surface. The ion beam is effect on its hardness and adhesion to surface hardened PC substrate.

  • PDF

A Study on the ITO Thin Films on Plastic Substrate Using by Powdery Targ (분말 타겟을 이용한 플라스틱 기판 상의 ITO 박막 제조에 관한 연구)

  • Lee, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1683-1685
    • /
    • 1999
  • ITO films on plastic substrate were prepared by DC magnetron sputtering method using powdery target and their properties were investigated as a function of the deposition conditions. As the sputtering power and total pressure were higher, the resistivity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the total pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with $8{\times}10^{-3}{\Omega}-cm$ of resistivity and 80% of transmittance at optimal conditions.

  • PDF

A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting (Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구)

  • Sang-Hoon Lee;Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

Fabrication and characteristics of the flexible DSSC

  • Choe, Eun-Chang;Choe, Won-Chang;Wi, Jin-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.2-400.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next generation solar cell because of their simple structure and low manufacturing cost. To realize a commercially competitive technology of DSSCs, it is imperative to employ a technique to prepare nanocrystlline thin film on the flexible organic substrate, aiming at increasing the flexibility and reducing the weight as well as the overall device thickness of DSSCs. The key operation of glass-to-plastic substrates conversion is to prepare mesoporous TiO2 thin film at low temperature with a high surface area for dye adsorption and a high degree of crystallinity for fast transport of electrons. However, the electron transport in the TiO2 film synthesized at low temperature is very poor. So, in this study, TiO2 films synthesized at high temperature were transferred on the selective substrate. We fabricated DSSCs at low temperature using this method. So, we confirmed that the performance of DSSCs using TiO2 films synthesized at high temperature was improved.

  • PDF

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.186-186
    • /
    • 2015
  • We have introduced multifunctional ITO single thin films formed by normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions. MFSS ITO also possesses high gas diffusion barrier properties simultaneously low resistivity even it deposited at room temperature without post annealing on plastic substrate. Nano-crystalline enhancement by Ar energy has energy window from 20 to 30 eV under blocking NOI condition. Effect of blocking NOI and optimal Ar energy window enhancement facilitate that resistivity is minimized to $3.61{\times}10^{-4}{\Omega}cm$ and the WVTR of 100 nm thick MFSS ITO is $3.9{\times}10^{-3}g/(m^2day)$ which is measured under environmental conditions of 90% relative humidity and 50oC that corresponds to a value of ${\sim}10^{-5}g/(m^2day)$ at room temperature. The multifunctional MFSS ITO with low resistivity, and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • Wi, Jin-Seong;Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF