• Title/Summary/Keyword: Thin membrane

Search Result 525, Processing Time 0.027 seconds

An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells

  • Han, S.C.;Kim, K.D.;Kanok-Nukulchai, W.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.807-829
    • /
    • 2004
  • The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the isotropic and anisotropic composite material. The effect of the coupling term between the bending strain and displacement has been investigated in the warping problem. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. In composite plates and shells, the transverse shear stiffness is defined by an equilibrium approach instead of using the shear correction factor. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. The results showed very good agreement compared with well-established formulations in the literature.

Fabrication of 3C-SiC micro heaters and its characteristics (3C-SiC 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure (빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계)

  • Lee, Jun-Bae;Kim, Tae-Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • This paper presents the multi-objective optimal design of thermopile sensor having beam or membrane structure. The thermopile sensor is composed of $Si_{3}N_{4}/SiO_{2}$ dielectric membrane, Al-polysilicon thermocouples and $RuO_{2}$ thin film for black body. The sensing method is based on the Seebeck effect which is originated from the temperature difference of the two positions, black body and silicon rim. The objective functions of the presented design are sensitivity, detectivity and thermal time constant. The modelling of the sensor is proposed including the package. The multi-objective optimization technique is applied to the design of the sensor not only inspecting the modelling equation but also simulating mathematical programming method. Especially, fuzzy optimization technique is adapted to get the optimal solution which enables the designer to reach the more practical solution. The design constraint of the voltage output originated from the change of the environmental temperature is included for practical use.

  • PDF

EFFECT OF HYDROXYLAPATITE SYNTHETIC GRAFT AND GUIDED TISSUE REGENERATION TECHNIQUE ON HEALING OF EXTRACTION SOCKET IN MONGREL DOGS (성견에서 발치 직후 Hydroxylapatite의 축조와 조직 유도 재생술이 발치와의 골조직 치유에 미치는 영향)

  • Han, Dong-Hoo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.187-200
    • /
    • 1996
  • After loss of tooth, initial healing process is critical to preserve residual alveolar process. This study was conducted to compare the effect of hydroxylapatite particle synthetic graft and guided tissue regeneration procedure on healing of extraction wounds in 5 mongrel dogs. To investigate the maturity of bone and velocity of bone heating, bone-labeled tracers were used. After 16 weeks healing period, dogs were sacrificed. The specimens were treated with Villanueva bone stain. Fluorescence microscopy and polarized microscopy were performed to exam the pattern of bone formation in the extraction socket. The results were following ; 1. Pattern of bone regeneration in the group of hydroxylapatie graft and the group of membrane protection after hydroxylapatite graft was following ; bone regeneration was slow, regenerated bone was immature, and thickness of cortical layer was thin compare to that of untreated control group. 2. Cortical layers in membrane protected group were somewhat thicker but less condense to that of untreated control group. 3. Infiltration of inflammation cells were found in the groups using hydroxylapatite graft and membrane. We concluded that grafting of replamineform hydroxylapatite particles into the extraction socket delayed healing of the wound and disturbed the formation of cortical bone at the roof of extraction socket. The placement of expanded polytetrafluoroethylene membranes on the extraction socket promotes the bone regeneration. But newly formed bone in cortical layer consists of the cortico-cancellous bone in comparison with the cortical bone of the control group.

  • PDF

Morphology and Ultrastructure on the Gill of the Fleshy Shrimp, Penaeus chinensis (Decapoda: Penaeidae) (대하(Penaeus chinensis) 아가미의 형태 및 미세구조)

  • Lee, Jung-Sick;Kang, Ju-Chan;Jeong, Seon-Young
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.311-319
    • /
    • 2000
  • The gill morphology and ultrastructure of the fleshy shrimp, Penaeus chinensis were investigated by light and electron microscopy. Fleshy shrimp has dendrobranchiate gills. Gill has a longitudinal septum dividing them into afferent and efferent channel. Each gill lamella is covered by multi-layered thin cuticle of different electron density. The lamella basal cell is squamous and contains cytoplasm of electron dense. Simple epithelial layer consists of squamous epithelium contained large nucleus. The lamella pillar structures are characterized by the axial microtubules and lateral membrane interdigitations Secretory cells of AB-PAS negative are multicellular gland. In active gland each cell boundary is not apparent and the cytoplasm contains smooth endoplasmic reticula, mitochondria, membrane-bounded secretory vesicles of low electron density and granular resettes. In inactive gland each cell boundary is apparent and the cytoplasm is occupied with numerous small granules of electron dense. The well-developed rough endoplasmic reticula and Golgi apparatus are observed in the unicellular gland of alcian blue positive.

  • PDF

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

Ultrastructure of the Submandibular Gland in the Korean Spider Shrew, Sorex caecutiens (뒤쥐, Sorex caecutiens 악하선의 미세구조)

  • Jeong, Soon-Jeong;Yoo, Ji-Yun;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The ultrastructure of submandibular gland was examined in the Korean spider shrew, Sorex caecutiens. The submandibular gland wat composed of acini and salivary ducts. A submadibular acinus was a mixed gland having serous demilune cells and mucous cells that were filled with well developed rER, mitochondria and large amount of dense secretory granules. Serous acinar granules were oval shape without distinct limiting membrane on the border and it had only coarse specks with various density. Mucous acinar granules were oval shape without distinct limiting membrane and had a variety pattern with several thin or transparent bands into the homogeneous dense matrix. Thus submandibular acinar granules of S. caecutiens belonging to subfamily Soricinae were distinct from the other mammalian species including Crocidurinae, because of the absence of limiting membrane of acinar granules and specific pattern of mucous acinar granules. Granular duct cells had large amount of small granular vesicles and several characteristic structures of granule which were revered with stratified limiting membranes and filled with coarse serous-like granule or homogeneous matrix.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.