• Title/Summary/Keyword: Thin foil

Search Result 161, Processing Time 0.03 seconds

Micro pattern forming on the metal thin foil Using micro dieless forming system (마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형)

  • Lee, H.J.;Lee, H.W.;Park, J.H.;Lee, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF

A Study on Heaping of Granules (알갱이 군의 무더기 현상에 관한 연구)

  • Han, Ji Heum;Han, Won Heum;Lee, Kwang-Hee
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.183-191
    • /
    • 2013
  • In order to elucidate the granular heaping phenomenon, the movement behaviors of 3 different types of granule (millet, sand and thin foil disc) have been investigated by applying the vertical or the rotational vibration to each of the 3 vessels, respectively containing one of the 3 types of granule. In case of vertical vibrations, all of them showed the heaping phenomenon like Gerner's simulation, and that in the order of the millet, sand and thin foil disc, regardlessly of weight. Especially, a heaping of disc granules was proven to be relatively delayed, and that with several small complex clutters. For rotational vibration, the central area of vessel turned out to rise up due to the repulsive force by vessel wall as well as the collision between elastic granules, right after the turning point of vibration. Even spiral pattern was made when the rotational vibration amplitude got higher. From these facts, one can see that the heaping be characterized by the inclusion of attractive granules as well as the vibrational type applied to granule vessel.

Development of Laser-driven Proton Source Toward Its Applications

  • Sagisaka, Akito;Daido, Hiroyuki;Pirozhkov, Alexander S.;Yogo, Akifumi;Ogura, Koichi;Orimo, Satoshi;Ma, Jinglong;Mori, Michiaki;Nishiuchi, Mamiko;Bulanov, Sergei V.;Esirkepov, Timur Zh.;Oishi, Yuji;Nayuki, Takuya;Fujii, Takashi;Nemoto, Koshichi;Nagatomo, Hideo
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-41
    • /
    • 2009
  • We observe the proton signals produced by laser interaction with thin-foil targets of polyimide and of copper. We change the thickness of the polyimide target to $7.5{\mu}m$, $12.5{\mu}m$, and $50{\mu}m$. High-energy protons with the maximum energy of ${\sim}2.3\;MeV$ from $7.5{\mu}m$ thick polyimide are observed. This proton beam with the maximum energy of multi-MeV has various applications such as a proton shadowgraphy.

Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성)

  • Kim, Min Suk;Ahn, Jong Pil;Kim, Kyoung Hun;Kim, Kyung Ja;Park, Joo Seok;Seo, Won Seon;Kim, Hyung Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

Material Properties of ETFE Membrane under Various Temperature (온도변화에 따른 ETFE 막재의 재료특성 연구)

  • Kim, Young-Ho;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2011
  • It is needed to investigate the material properties of ETFE foil under various temperatures because ETFE membrane foils have very thin depth and relatively high flexibility. In this paper, the material properties of ETFE membrane foil obtained from 3 testes under various temperatures are presented. First, the uniaxial test under four temperatures as -20$^{\circ}C$, 0$^{\circ}C$, +20$^{\circ}C$ and +40$^{\circ}C$ was performed. Each 5 specimen was tested and the yield stress, tensile strength and the Young's modulus of the foils are obtained. Second, the creep testes under three temperatures as 25$^{\circ}C$, 40$^{\circ}C$ and 60$^{\circ}C$, 3MP, 6MP and 9MP tension load was subjected to the specimen and the creep characteristics was investigated. Finally, the tear test under $5^{\circ}C$, $^0{\circ}C$ and $20^{\circ}C$ was performed. It is concluded that the shape of stress-strain curve or general behaviors are similar with that of normal temperatures but the mechanical characteristics of ETFE membrane foils were affected by the temperatures, obviously.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

Study on Characteristics of Electrodeposited Thin Copper Film by Inorganic Additives in Pyrophosphate Copper Plating Bath (피로인산동욕의 무기첨가제에 의한 전해동박의 특성에 관한 연구)

  • Koo, Seokbon;Hur, Jinyoung;Lee, Hongkee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The copper deposit on steel plate was prepared by pyrophosphate copper plating solution made with variation of inorganic additive. $NH_4OH$ and $NH_4NO_3$ were used as inorganic additives. The copper layer characteristics - tensile strength, crystallite size and crystal orientation - were evaluated by X-ray diffraction and Universal Test Machine. The presence of ammonium nitrate results in reduction of average roughness value from $0.08{\mu}m$ to $0.03{\mu}m$. In pyrophosphate copper plating solution without Inorganic additive, tensile strength of electrodeposit copper foil was reduced from 600 MPa to 180 MPa after 7 days aging. However, when adding ammonium nitrate, there was almost no change of tensile strength, intensity of crystal orientation - (111), (200) and (220) - and crystallite size (2~30 nm).

Fabrication of Etched Graphene/CuO Nanowires as Field Effect Transistors

  • Hien, Vu Xuan;Kim, Se-Yun;Kim, MyeongEon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.430-430
    • /
    • 2013
  • Field effect transistor based on semiconductor nanowires has been attracting lots of concerns and studies of scientists because of its different characteristic comparing with other morphology like thin film. Nowadays, graphene is introducing a great promise as an active layer in field effect transistor due to its unique electronic and optoelectronic properties. Thus, a mix structure between etched graphene and semiconductor nanowires is believed to expose novel electrical characteristics. In this study, CuO nanowires (20~80 nm in diameter and $1{\sim}10{\mu}m$ length) were grown during oxidizing Cu foil at $450^{\circ}C$ for 24 h. Besides, 3-layersetched graphene was deposited on Cu foil at $1,000^{\circ}C$ using a feedstock of $CH_4$/$H_2$ mixed gas in CVD system. A structure of Ni/Au electrode + CuO nanowires + etched graphene was fabricated, afterward. Finally, field effect properties of the device was revealed and compared with individual devices of just nanowires and just graphene.

  • PDF

Copper Sulfide Nanowires for Solar Cells (태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석)

  • Lim, Young-Seok;Kang, Yoon-Mook;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications (Polytetrafluoroethylene 분말 현탁액을 통한 다공성 박막 제조 및 에너지 발생소자 응용)

  • Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.