• Title/Summary/Keyword: Thin foil

Search Result 161, Processing Time 0.027 seconds

Poly-Si TFT on Metal Foil for 5.6-inch UTL (ultra-thin and light) AMOLED

  • Jeong, Jae-Kyeong;Lee, Hun-Jung;Kim, Min-Kyu;Hwang, In-Chan;Kim, Tae-Jin;Shin, Hyun-Soo;Ahn, Tae-Kyung;Lee, Jae-Seob;Kwack, Jin-Ho;Jin, Dong-Un;Mo, Yeon-Gon;Chung, Ho-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.198-201
    • /
    • 2006
  • The optimization of poly-Si TFT process on metal foil for UTL AMOLED was systematically investigated. The improvement in device performance of poly-Si TFT on metal foil was achieved by optimizing the dopant activation condition and gate dielectric structure. Hence, the world first flexible full color 5.6-inch AMOLED with top emission mode on poly-Si TFT stainless steel foil is demonstrated.

  • PDF

Development of Uranium-foil Fabrication Technology for Mo-99 Irradiation Target by Self Gravity Flowing for PFC Method (용탕자중공급 PFC법을 이용한 의료용 동위원소 Mo-99 조사타겟용 우라늄박판 제조공정개발)

  • Sim, Moon-Soo;Kim, Chang-Kyu;Kim, Ki-Hwan;Kim, Woo-Jung;Lee, Jong-Hyeon
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.288-292
    • /
    • 2011
  • In order to complement the drawbacks of quartz crucible such as fragile-like break and melt-leakage through open slit nozzle, a new PFC system has been developed using a common graphite crucible and plugging system. The u melt is fed on to the rotating a roll through slit nozzle by self-gravity. The new equipment was designed and manufactured successfully. An effort for optimizing all related parameter has been made. Then using the optimized parameters about 10 meters u foil having very thin thickness, which meets the target thickness of 130 ${\mu}m$ and enough width more than 60 mm could be made. The thickness homogeneity set improved, due to the lower eddy flowing of the melt flow the self-gravity feeding system.

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

A Study for The X-ray Image Acquisition Experiment Using by Gas Electron Multipliers (기체전자증폭기를 이용한 X-선 영상획득실험에 관한 연구)

  • 강상묵;한상효;조효성;남상희
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.83-89
    • /
    • 2003
  • The gas electron multiplier placed in the drift volume of conventional gas detectors, is a conceptually simple device for producing a large gas gain by concentrating the drift electric field over a very short distance to the point that electron avalanching occurs(〉 10$^4$ V/cm), greatly increasing the number of drifting electrons. This device consists of a thin insulating foil of several tens of urn in thickness. covered on each side with a thin metal layer(Cu), with tiny holes, usually 100 ${\mu}{\textrm}{m}$ or less in diameter. and with a spacing of 100-200 ${\mu}{\textrm}{m}$ through the entire foil. perforated by using chemical etching or high-powered laser beam technique In this study, we have investigated its operating properties with various experimental conditions, and demonstrated the possibility of using this device as a digital X-ray imaging sensor, by acquiring X-ray images based on the scintillation properties of the gas electron multiplier with standard CCD camera.

Evaluation of Mechanical Properties and FEM Analysis on Thin Foils of Copper (구리 박막의 기계적 물성 평가 및 유한요소 해석)

  • Kim Yun-Jae;An Joong-Hyok;Park Jun-Hyub;Kim Sang-Joo;Kim Young-Jin;Lee Young-Ze
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.71-76
    • /
    • 2005
  • This paper compares of mechanical tensile properties of 6 kinds of copper foil. The beam lead made with copper foil. Different from other package type such as plastic package, Chip Size Package has a reliability problem in beam lead rather than solder joint in board level. A new tensile loading system was developed using voice-coil actuator. The new tensile loading system has a load cell with maximum capacity of 20 N and a non-contact position measuring system based on the principle of capacitance micrometry with 0.1nm resolution for displacement measurement. Strain was calculated from the measured displacement using FE analysis. The comparison of mechanical properties helps designer of package to choose copper for ensuring reliability of beam lead in early stage of semiconductor development.

Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Flexible Substrates: Critical Challenges and Enabling Solutions

  • O'Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Bawolek, Edward J.;Ageno, Scott K.;O'Brien, Barry P.;Marrs, Michael;Bottesch, Dirk;Dailey, Jeff;Naujokaitis, Rob;Kaminski, Jann P.;Allee, David R.;Venugopal, Sameer M.;Haq, Jesmin;Colaneri, Nicholas;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1459-1462
    • /
    • 2008
  • In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for active matrix flexible displays. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are planarization and electrical isolation, and management of stress (CTE mismatch) during TFT fabrication. For plastic substrates the principal challenge is dimensional instability management.

  • PDF

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

The thermal annealing effect on electrical performances of a-Si:H TFT fabricated on a metal foil substrate

  • Han, Chang-Wook;Nam, Woo-Jin;Kim, Chang-Dong;Kim, Ki-Yong;Kang, In-Byeong;Chung, In-Jae;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.745-748
    • /
    • 2007
  • Hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) were fabricated on a flexible metal substrate at $150\;^{\circ}C$. To increase the stability of the flexible a-Si:H TFTs, they were thermally annealed at $230\;^{\circ}C$. The field effect mobility was reduced because of the strain in a- Si:H TFT under thermal annealing.

  • PDF