• Title/Summary/Keyword: Thin filament

Search Result 114, Processing Time 0.019 seconds

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Electron microscopic studies on Flavobacterium branchiophila in experimentally induced gill disease of rainbow trout (세균성(細菌性) 아가미병(病)에 실험적(實驗的)으로 감염(感染)된 무지개송어에 있어서 Flavobacterium branchiophila에 대한 전자현미경학적(電子顯微鏡學的) 연구(硏究))

  • Heo, Gang-joon
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.381-387
    • /
    • 1992
  • Gill epithelia of normal rainbow trout fingerlings and abnormal ones suffering bacterial gill disease by experimental infection were examined by transmitting electron microscopy (TEM) and scanning electron microscopy (SEM). TEM observations revealed that Flavobacterium branchiophila consisted of slender rods measuring 0.5 by 5 to $8{\mu}m$, and they had which were long, thin, flexible filaments measuring approximately 4 nm by $1{\mu}m$, and packed together to organize into bundles. Morphological alterations of the diseased epithelia started at hypertrophy of the lamellar epithelium. F branchiophila attached to the gill surface of infected fish through pili with a regular distance, and did not invade into gill tissue. In SEM observations, normal surface ultrastructure of epithelial cell in the outermost layer were characterized by a typical labyrinth-like structure branching and anastomosing microridges on the cell surface. Hyperplastic lesions in experimentally infected gill were most serious at near the tips. Each filament exhibited a club-like, and fusion between the filaments was sometimes observed at their tips. On the surface of gill filaments, thread-like bacterial cells attached and were entangled. The bacterial cells almost covered the surface. After immersion in 5 % NaCl, the cell of F branchiophila, however, appeared to be indeterminate shape.

  • PDF

A Study on How to Make Effective Digital Craft Molds Using 3D Printing Technology (3D Printing 기술을 활용한 효과적인 Digital Craft Molds 제작 방법 연구)

  • Jang, Ji-Su;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.283-288
    • /
    • 2021
  • Due to the 4th Industrial Revolution and the Digital Revolution, many changes are being made in the manufacturing method and structure in the field of plastic arts and crafts. Therefore, in this study, we tried to present a new work method suitable for this era by effectively utilizing the digital technology called 3D printer. For this study, first of all, the theoretical background of 3D printing technology was understood, and prior studies on the use cases of 3D printing technology were summarized. Based on this, three types of craft molds were produced using a 3D printer. As a result of the study, there were characteristics that appear respectively depending on the thickness or overlapping of the craft molds using 3D printing technology. First, in the case of the thickness of the craft molds, the thinner the strength, the weaker the strength, but there was an advantage in that it was easier to take out the contents of the molds. However, it was determined that the thick craft molds was stable to contain the dense and heavy material. Second, in the case of overlapping of craft molds, the advantages of both thin and thick molds were obtained as a result of using a double-layered molds. However, there was a disadvantage that the surface of the contents taken out was not smooth, so that post-processing was necessary. In future research, I hope to deal with the material of the filament used in 3D printers.

A Study on the Usefulness of Copper Filters Made with 3D Printers in Longbone Examination Using Long Length Detector (장골 검출기를 이용한 장골 검사에서 3D 프린터로 제작한 구리 필터의 유용성 연구)

  • Kim, Woo-Young;Seo, Hyun-Soo;Han, Bong-Ju;Yoon, Myeong-Seong;Lee, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.607-613
    • /
    • 2021
  • Long-bone examination is mainly used for inspection of the lower extremities. Recently, a long length detector (FXRD-1751S, VIEWORKS, Korea) with three digital detectors attached has been developed. High energy X-rays are used because pelvic areas require high image quality. In this case, X-rays are transmitted a lot in thin areas such as an ankle, and it is not suitable for diagnosing an image. Therefore, this study use copper filters made with 3D printers to increase image quality in the Long-bone inspection. A copper filter was manufactured in consideration of the overall thickness of the lower part. The experiment was conducted in anterior-posterior (AP) and lateral (LAT) positions, depending on the presence or absence of the filter. 5x5 pixels of region of interest (ROI) were selected from the pelvis, knee, and ankle areas. X-rays were irradiated under the conditions of 70 kVp and 40 mAs for AP, 80 kVp, and 63 mAs for lat when without filters, 90 kVp and 80 mAs for AP, 90 kVp and 100 mAs for lat when with filters. signal to noise ratio(SNR) ratio and contrast to noise (CNR) values were measured 1106.38, 14.34 before applying the filter and 1189.32, 70.43 after the filter. For the knee area, 650.44, 97.61 before applying the filter, and 1013.17, 444.24 after applying the filter. For the ankle area, 206.65, 23.68 before applying the filter and 993.50, 136.11 after applying the filter. In the Long-bone examination, SNR and CNR were greatly measured when the filter was applied, confirmed the availability of using the copper additional filter.