• 제목/요약/키워드: Thin Sheet Materials

검색결과 235건 처리시간 0.025초

Development of Cube Texture in a Silver-Nickel Bi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.47-50
    • /
    • 1999
  • An Ag/Ni bi-layer sheet was fabricated by the combination of powder metallurgy, diffusion bonding, cold rolling and texture annealing processes. After heat treating the cold rolled thin Ag/Ni bi-layer sheet at $900^{\circ}C$ for 4h, the excellent cube texture was developed on nickel surface. Qualitative chemical analysis using EPMA showed that inter diffusions of Ni and Ag in Ag/Ni bi-layer composite were negligible. It showed that Ag can be used as a chemical barrier for Ni and vice versa.

  • PDF

증착 입사각에 따른 금속박막의 물성 변화 (The Change of Physical Properties of Thin Metal Film with than Evaporating Incident Angles)

  • 진희창;조현춘;백수현
    • 한국표면공학회지
    • /
    • 제20권2호
    • /
    • pp.43-48
    • /
    • 1987
  • Chromium and Aluminum films were deposited by evaporation technique in $3{\times}10^{-6}$ mbar vacuum level at the incident angles ranging from $0^{\circ}\;to\;60^{\circ}$ with various evaporation rates. We measured the sheet resistances and light transmittances, and observed diffraction patterns by TEM of these films. Relations among diffraction patterns, sheet resistances and light transmittances were discussed. The sheet resistances and light transmittances were shown the lowest values at 25$^{\circ}C$ of incident angle for all kinds of evaporation rates.

  • PDF

용융드래그방법을 이용한 마그네슘 합금 박판의 제조조건 확립 (Establishment of Manufacturing Conditions for Magnesium Alloy Thin Plate using Melt Drag Method)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.511-518
    • /
    • 2021
  • An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Characteristics of $\pi$-type attenuators using Ti(N) thin film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.50-50
    • /
    • 2007
  • We report the effect of the film thickness on electrical properties of Ti(N) film resistors. The applications of titanium nitride thin film resistor in $\Pi$-type attenuators are also characterized. As film thickness decreases from 100 to 30 nm, temperature coefficient of resistance significantly decreases from -60 to -148 ppm/K, while sheet resistance increases from 37 to $270\;{\Omega}/{\square}$. The characterizations of 20dB-attenuators using thin film resistors are improved in comparison with those using thick film resistors. The $\Pi$-type attenuators using Ti(N) thin film resistors exhibit a attenuation of -19.94 dB and voltage standing wave ratio of 1.16 at a frequency of 2.7 GHz.

  • PDF

박판 딤플 성형을 위한 유한요소해석 및 성형성 평가 (Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

Suppressing Lateral Conduction Loss of Thin-film Cathode by Inserting a Denser Bridging Layer

  • Park, Jung Hoon;Lee, Seung Hwan;Kim, Hyoungchul;Yoon, Kyung Joong;Lee, Jong-Ho;Han, Seung Min;Son, Ji-Won
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.304-307
    • /
    • 2015
  • To reduce the lateral conduction loss of thin-film-processed cathodes, the microstructure of the thin-film cathode is engineered to contain a denser bridging layer in the middle. By doing so, the characteristic crack-like pores that separate the cathode domains in thin-film-processed cathodes and hamper lateral conduction are better connected and, as a result, the sheet resistance of the cathode is effectively reduced by a factor of 5. This induces suppression of the lateral conduction loss and expansion of the effective current collecting area; the cell performance is improved by more than 30%.

SELECTED ADVANCES IN SHEET MATERIAL FORMING

  • Lee, Daeyong-
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.1-9
    • /
    • 1994
  • Three recent developments made at Rensselaer in sheet material forming processes are briefly reviewed in this paper. These advances represent three broad disciplines of Process Simulation, Forming Processes, and Computer-Aided Measurement Methods. The first development deals with simple and quick computer simulation of 2D sheet forming process without depending on popular finite element analysis methods. An analytical method based on a thin shell theory accounts for bending and unbending effects, and is capable of simulating practical sheet metal forming processes under the plane strain condition. The second area is concerned with innovative methods to improve formability of sheet materials by temperature gradient forming. The drawing limit is increased by such an improved temperature gradient forming process. The third and final area deals with a totally new experimental technique to capture 3D geometry data and measure strain distributions of sheet metal parts using a digital 35mm SLR camera.

성형벨트를 부착시킨 장비를 이용하여 용융드래그방법으로 제작한 마그네슘 합금의 제작조건 확립 (Establishment of Manufacturing Conditions for Magnesium Alloys by the Melt Drag Method using Equipment with a Forming Belt)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권10호
    • /
    • pp.576-581
    • /
    • 2021
  • To improve the shortcomings and expand the advantages of the single-roll melt drag method, which is a type of continuous strip casting method, the melt drag method with a molding belt is applied to AZ31 magnesium alloy. By attaching the forming belt to the melt drag method, the cooling condition of the thin plate is improved, making it possible to manufacture thin plates even at high roll speed of 100 m/min or more. In addition, it is very effective for continuous production of thin plates to suppress oxidation of the molten metal on the roll contact surface by selecting the protective gas. As a result of investigating the relationship between the contact time between the molten metal and the roll and the thickness of the sheet, it is possible to estimate the thickness of the sheet from the experimental conditions. The relationship between the thin plate thickness and the grain size is one in which the thinner the thin plate is, the faster the cooling rate of the thin plate is, resulting in finer grain size. The contact state between the molten metal and the roll greatly affects the grain size, and the minimum average grain size is 72 ㎛. The thin plate produced using this experimental equipment can be rolled, and the rolled sample has no large cracks. The tensile test results show a tensile strength of 303 MPa.