• Title/Summary/Keyword: Thin Outlet

Search Result 29, Processing Time 0.026 seconds

A Study of Purchase behavior and Wearing sensation of F/W Season Knit Wear (추동용 니트웨어 구매행동과 착용감에 관한 연구)

  • Park, Sun-Chun;Lee, Young-Ju
    • Korean Journal of Human Ecology
    • /
    • v.18 no.2
    • /
    • pp.431-439
    • /
    • 2009
  • This research aims to invest consumers' purchase behavior and preference of F/W season knit wear to prepare for basic data in producing competitive knit wear which can meet consumers' demands. The results are as follows: 1. Consumers in their twenties are largely purchasing their knit wear at bonded clothing shops, consumers in their thirties at outlet stores and consumers in their forties and fifties at department stores. As for preferred materials in knit wear, the twenties like 100% of cotton, the thirties mixed wool, and the forties and the fifties 100% of wool. Across all age groups, they prefer knit wear pattern with no figures, while they consider its design and color as important factors in purchasing F/W knit wear. 2. As for the wearing sensations of F/W knitwear of three age groups, there are not significant differences in other factors except a factor of 'jacket length'. 3. As for the fitting sensation about F/W knit wear, consumers with 'thin' somatotype feel high comfort in the factor of 'girth', while consumers with standard somatotype feel high satisfaction in the factor of 'length'.

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

The Experimental Study of Ice Thermal Storage for Falling Film Type - Sprint Coil Type - (스파이럴형 냉동코일을 사용한 유하액막식 빙축열조에서 열전달현상에 관한 실험적연구)

  • Lee, C.M.;Kim, D.H.;Cho, N.C.;Kim, I.G.;Park, S.R.;Choi, K.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The heat transfer characteristics of ice storage system of falling film type using sprial coil is investigated. The experimental facilities consisted of a water tank, spiral coils located above the tank, an upper water distributor, and a circulating water pump. Water is distributed uniformally over the spiral coils and it forms falling thin films. In the process of freezing, ice is formed on outside of the spiral coils through recirculation of tank water. In the process of melting, ice is melted with return water from the heat load, while the water is chilled again and drops into the tank. The results of falling film type of ice thermal storage system are as follows. The highly efficient shower flowrates for icing is near $3{\ell}/min$. Icing rates on spiral coils is rosed while brine flowrates is increased. Lower brine temperature is not only increased freezing rates but. also become higher total icing weight and overall heat transfer coefficient. Smaller shower flowrates is obtained lower water temperature on outlet for a long time. The amounts of quantity can be detected more accurately by measuring storage tank weight.

  • PDF

EFFECTS OF FLUORIDE CONCENTRATION AND SEED MATERIAL ON SEEDED CRYSTAL GROWTH (불소의 농도와 Seed Material이 Crystal Growth에 미치는 영향)

  • Oh, Seung-Yeon;Jung, Il-Young;Kum, Kee-Yeon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.560-574
    • /
    • 1997
  • The present study was undertaken to investigate the crystal growth onto human enamel mineral and synthetic hydroxyapatite(HA) seeds in media resembling the enamel fluid composition. Effects of fluoride at high concentrations on the precipitation were also examined in a bench-top crystal growth model adopting a miniaturized reaction column. The Ca, P and F concentrations and pH values of the inlet and outlet solutions were determined. The recovered solid samples were weighed to assess the amount of minerals precipitated during the experimental period, and finally viewed under a scanning electron microscope. Remarkable findings were that 1) both biological and synthetic seeds with the same total surface areas yielded similar amounts of crystal growth, 2) the amount of crystal growth was accelerated in a manner depending on fluoride concentrations in the media, 3) SEM observations disclosed that without the addition of fluoride, precipitation of thin, plate-like OCP crystals became prominent, but by increasing the fluoride concentration(beyond 1ppm F), rod-like crystals having a pointed edge were most frequently observed, without any evidence for precipitation of the plate-like crystals. Furthermore, the dimension of rod-like crystals was increased in proportion to fluoride concentrations, 4) there was no difference in the morphological feature of precipitated mineral phase upon seeding between human enamel seed and synthetic HA seed. The overall results support the view that the seeded crystal growth model is of value to gain insight into the mechanism of enamel crystal growth under fluoride regimens.

  • PDF

Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector (다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析))

  • Song, Hyun-Kap
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

Computational Fluid Dynamics for Enhanced Uniformity of Mist-CVD Ga2O3 Thin Film (Ga2O3초음파분무화학기상증착 공정에서 유동해석을 이용한 균일도 향상 연구)

  • Ha, Joohwan;Lee, Hakji;Park, Sodam;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.81-85
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity method since the precursor solution is misting with an ultrasonic generator and reacted on the substrate under vacuum-free conditions of atmospheric pressure. However, since the deposition distribution is not uniform, various efforts have been made to derive optimal conditions by changing the angle of the substrate and the position of the outlet to improve the result of the preceding study. Therefore, in this study, a deposition distribution uniformity model was derived through the shape and position of the substrate support and the conditions of inlet flow rate using the particle tracking method of computational fluid dynamics (CFD). The results of analysis were compared with the previous studies through experiment. It was confirmed that the rate of deposition area was improved from 38.7% to 100%, and the rate of deposition uniformity was 79.07% which was higher than the predicted result of simulation. Particle tracking method can reduce trial and error in experiments and can be considered as a reliable prediction method.

Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector (태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -)

  • Song, Hyun Kap;Yon, Kwang Seok;Cho, Sung Chan
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF

Large scale splitter-less FFD-SPLITT fractionation: effect of flow rate and channel thickness on fractionation efficiency (대용량 중력장 SPLITT Fractionation: 분획효율에 미치는 채널 두께와 유속의 영향)

  • Yoo, Yeongsuk;Choi, Jaeyeong;Kim, Woon Jung;Eum, Chul Hun;Jung, Euo Chang;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • SPLITT fractionation (SF) allows continuous (and thus a preparative scale) separation of micronsized particles into two size fractions ('fraction-a' and 'fraction-b'). SF is usually carried out in a thin rectangular channel with two inlets and two outlets, which is equipped with flow stream splitters at the inlet and the outlet of the channel, respectively. A new large scale splitter-less gravitational SF (GSF) system had been assembled, which was designed to eliminate the flow stream splitters and thus is operated by the full feed depletion (FFD) mode (FFD-GSF). In the FFD mode, there is only one inlet through which the sample is fed. There is no carrier liquid fed into the channel, and thus prevents the sample dilution. The effects of the sample-feeding flow rate, the channel thickness on the fractionation efficiency (FE, number % of particles that have the size predicted by theory) of FFD-GSF was investigated using industrial polyurethane (PU) latex beads. The carrier liquid was water containing 0.1% FL-70 (particle dispersing agent) and 0.02% sodium azide (used as bactericide). The sample loading rate was varied from about 4 to 7 L/hr with the sample concentration fixed at 0.01%. The GSF channel thickness was varied from 900 to $1300{\mu}m$. Particles exiting the GSF channel were collected and monitored by optical microscopy (OM). Sample recovery was monitored by collecting the fractionated particles on a $0.45{\mu}m$ membrane filter. It was found that FE of fraction-a was increased as the channel thickness increases, and FE of fraction-b was increased as the flow rate was increased. In all cases, the sample recovery has higher than 95%. It seems the new splitter-less FFD GSF system could become a useful tool for large scale separations of various types of micron-sized particles.