• Title/Summary/Keyword: Thin Film Thickness

Search Result 1,956, Processing Time 0.029 seconds

Nanocomposite Ni-CGO Synthesized by the Citric Method as a Substrate for Thin-film IT-SOFC

  • Wang, Zhenwei;Liu, Yu;Hashimoto, Shin-ichi;Mori, Masashi
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.782-787
    • /
    • 2008
  • Ni-ceria cermets have been extensively investigated as candidates for the anode in intermediate-temperature solid oxide fuel cells. We have used the citric method to synthesize nanocomposite powders consisting of NiO (Ni metal content: $40{\sim}60%$ by volume) highly dispersed in $Ce_{0.9}Gd_{0.1}O_{1.95}$ (CGO). The microstructure characteristics and sintering behaviors of the nanocomposites were investigated. No impurity phases were observed and the shrinkage of these substrates matched well with that of a CGO electrolyte with a specific surface area of $11\;m^2/g$. Densification of the CGO electrolyte layer to $<5\;{\mu}m$ thickness was achieved by co-firing the laminated electrolyte with the porous NiO-CGO substrate at $1400^{\circ}C$ for 6 h.

A Study on the double-layered dielectric films of tantalum oxide and silicon nitride formed by in situ process (연속 공정으로 형성된 탄탈륨 산화막 및 실리콘 질화막의 이중유전막에 관한 연구)

  • 송용진;박주욱;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.44-50
    • /
    • 1993
  • In an attempt to improve the electrical characteristics of tantalum pentoxide dielectric film, silicon substrate was reacted with a nitrogen plasma to form a silicon nitride of 50.angs. and then tantalum pentoxide thin films were formed by reactive sputtering in the same chamber. Breakdown field and leakage current density were measured to be 2.9 MV/cm and 9${\times}10^{8}\;A/cm^{2}$ respectively in these films whose thickness was about 180.angs.. With annealing at rectangular waveguides with a slant grid are investigated here. In particular, 900.deg. C in oxygen ambient for 100 minutes, breakdown field and leakage current density were improved to be 4.8 MV/cm and 1.61.6${\times}10^{8}\;A/cm^{2}$ respectively. It turned out that the electrical characteristics could also be improved by oxygen plasma post-treatment and the conduction mechanism at high electric field proved to be Schottky emission in these double-layered films.

  • PDF

The Integrated Surface Plasmon Resonance Sensor using Polymer Optical Waveguide (폴리머 광도파로를 이용한 집적형 표면 플라즈몬 공명 센서)

  • Oh, Geum-Yoon;Kim, Doo-Gun;Kim, Hong-Seung;Lee, Tae-Kyeong;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.433-436
    • /
    • 2012
  • We propose a novel micro surface plasmon resonance (SPR) sensor system based on polymer materials. The proposed SPR system consists of the incident medium with polymer waveguide and the gold thin film for sensing area. Using a polymer optical waveguide instead of a prism in SPR sensing system offers miniaturization, low cost, and potable sensing capability. The whole device performance was analyzed using the finite-difference time domain method. The optimum gold thickness in the attenuated total reflection mirror of polymer waveguide is around 50 nm and the resonance angle to generate surface plasmon wave is 68 degrees.

SIMULATION OF THIN-FILM FIELD EMITTER TRIODE

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.651-654
    • /
    • 2002
  • We carried out 2-dimensional numerical calculations of electrostatic potential for triode field emitters with planar cathodes using the finite element method. As it turned out, the conventional triode structure with a planar cathode suffered from large gate current and wide spreading of emitted electrons. To circumvent these shortcomings, we proposed a new triode structure. By simply inserting a conducting layer of proper thickness on top of the cathode layer, we were able to modify the electric field distribution on the cathode surface so that low gate current and electron-focusing effect were achieved, simultaneously.

  • PDF

The characteristics of joints with In-Ag alloy (Indium-silver alloy를 이용한 접합의 특성)

  • Kim, Jae-Wook;Kim, Je-Yoon;Kim, Sang-Sig;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.256-258
    • /
    • 2003
  • Two Si wafers are bonded with indium-silver alloy using diffusion bonding method. When silver and indium thin films are contacted, they diffuse into each other and form inter-metallic compounds like $AgIn_2$, $Ag_2In$, $Ag_3In$ etc. These compounds are determined by ratio of two metals. From phase diagram of Ag-In alloy, we can get the ratio of $Ag_2In$, that has high melting point about 700$^{\circ}C$, approximately 2:1. This ratio was made by controlling of film thickness. And bonding was executed by annealing and adding pressures at a time. The joint of these wafers had been observed by SEM. And we had also seen the EDS (Energy Dispersive Spectroscopy) data to analysis the component of samples.

  • PDF

ZnO Nanowires Fabricated by Pulsed Laser Deposition using Gold Catalyst (PLD-Furnace로 증착시킨 금촉매를 이용한 ZnO 나노와이어 합성)

  • Son, Hyo-Jeong;Jeon, Kyung-Ah;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.5-6
    • /
    • 2005
  • ZnO nanowlres (NWs) were fabricated using Au as catalyst for a method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth. The target used in synthesis was pure ZnO ceramics. Two different substrates were used; (0001)-oriented sapphires and Au-coated sapphires. The Au thin film was deposited by thermal evaporation and the thickness was about 50 ${\AA}$. ZnO NWs were only formed in case of that used catalyst metal. Field effect scanning electron microscopic (FESEM) investigation showed that the average diameter of ZnO NWs was about 70 nm and the typical lengths varied from $3{\sim}4{\mu}m$.

  • PDF

Study of Photocatalytic Activity and Phostability of ZnO Particles Coated with UV-stable Polydimethylsiloxane

  • Jeong, Myung-Geun;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Dae-Han;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.188-188
    • /
    • 2012
  • ZnO particles with a size range of 50-150 nm were coated with polydimethylsiloxane (PDMS) with a thin film thickness of 3-4 nm using a simple ambient-pressure chemical vapor deposition methods. Surfaces consisting of the PDMS-coated ZnO nanoparticles were found to be superhydrophobic with a water contact angle higher than $160^{\circ}$. The superhydrophobicity was sustained in the presence of UV light. Photocatalytic activity and photocorrosion of ZnO were nearly completely quenched in the presence of PDMS coating. It is suggested that our PDMS-coating can be of potential interest for the application of ZnO in UV protection agents and energy and electronic devices.

  • PDF

Equivalent Oxide Thickness Scaling for Multi-Component Dielectric Thin Film (등가산화막두께 스케일링을 위한 다성분 산화막에 관한 연구)

  • An, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.155-155
    • /
    • 2015
  • 메모리 반도체의 지속적인 scale down을 위해서는 고유전 산화막을 이용한 등가산화막두께(EOT) 스케일링이 이뤄져야 한다. 특히, DRAM의 커패시터의 경우, EOT scaling을 위한 신 물질 및 공정개발이 지연되면서 전극과 유전체 사이의 계면특성 개선, 또는 기존에 사용하던 물질을 지속적으로 사용할 수 있는 방안에 대한 필요성이 대두되고 있다. 본 발표에서는 DRAM 커패시터 소재 개발이 겪고 있는 어려움에 대해 소개하고 기존에 반도체 라인에서 사용하고 있는 물질들을 조합한 다성분계 산화막을 이용하여 EOT 0.5 nm를 구현하기 위한 연구 결과에 대해 보고한다. 또한 앞으로 지속적인 커패시터 유전체 개발을 위해 관심을 갖고 수행해야 하는 연구에 대해 함께 다룬다.

  • PDF

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.