• 제목/요약/키워드: Thin Film Deposition

검색결과 2,988건 처리시간 0.034초

정전분무 장치를 이용한 C축 일방향 바륨페라이트(BaFe12O19) 박막형성 (Preparation of C-plane oriented BaFe12O19 film by electrospray deposition of colloidal precursor particles)

  • 이혜문;김용진
    • 한국입자에어로졸학회지
    • /
    • 제6권1호
    • /
    • pp.21-27
    • /
    • 2010
  • New process consisting of electrospray and epitaxial crystal growth processes was applied to the preparation of c-plane oriented barium ferrite ($BaFe_{12}O_{19}$) thin film for high density magnetic recording media. Sodium citrate aided process was proper to preparation of amorphous $BaFe_{12}O_{19}$ nanoparticles with geometric mean diameter of 3 nm and geometric standard deviation of 1.1. The electrospray was applicable to the prepare of amorphous $BaFe_{12}O_{19}$ thin film on a substrate, and the film thickness could be controlled by adjusting the electrospray deposition time. The c-plane oriented $BaFe_{12}O_{19}$ thin film was successfully prepared by 3 step annealing process of the $BaFe_{12}O_{19}$ amorphous film on a sapphire($Al_2O_3$) substrate; annealing at $350^{\circ}C$ for 30 min, annealing at $500^{\circ}C$ for 30 min, and annealing at $700^{\circ}C$ for 60 min.

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.95-98
    • /
    • 2015
  • Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.

화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성 (Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향 (Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films)

  • 이홍찬;최원국;심광보;오영제
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Preparation of LaGaO3 Based Oxide Thin Film on Porous Ni-Fe Metal Substrate and its SOFC Application

  • Ju, Young-Wan;Matsumoto, Hiroshige;Ishihara, Tatsumi;Inagaki, Toru;Eto, Hiroyuki
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.796-801
    • /
    • 2008
  • $LaGaO_3$ thin film was prepared on Ni-Fe metal porous substrate by Pulsed Laser Deposition method. By the thermal reduction, the dense $NiO-{Fe_3}{O_4}$ substrate is changed to a porous Ni-Fe metal substrate. The volumetric shrinkage and porosity of the substrate are controlled by the reduction temperature. It was found that a thermal expansion property of the Ni-Fe porous metal substrate is almost the same with that of $LaGaO_3$ based oxide. $LaGaO_3$ based electrolyte films are prepared by the pulsed laser deposition (PLD) method. The film composition is sensitively affected by the deposition temperature. The obtained film is amorphous state after deposition. After post annealing at 1073K in air, the single phase of $LaGaO_3$ perovskite was obtained. Since the thermal expansion coefficient of the film is almost the same with that of LSGM film, the obtained metal support LSGM film cell shows the high tolerance against a thermal shock and after 6 min startup from room temperature, the cell shows the almost theoretical open circuit potential.

크롬박막 스트레인 게이지의 제작과 그 특성 (The Fabrication of Chromiun Thin-Film Strain Gauges and Its Characteristics)

  • 김정훈;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.343-346
    • /
    • 1997
  • This paper presents the basic characteristics of Cr thin-film, which were deposited on glass by DC magnetron sputtering. The optimized deposition condition of Cr thin-film strain gauges were input power 7w/cm$^2$and the Ar working pressure was 9mtorr. GF(Gauge Factor), TCR(Temperature Coefficient of Resistance) and TCS(Temperature Coefficient of Sensitivity) of Cr thin-film strain gauges were 5.86, 400 ppm/$^{\circ}C$ and 0 ppm/$^{\circ}C$, respectively.

  • PDF