• Title/Summary/Keyword: Thin Film Deposition

Search Result 2,985, Processing Time 0.032 seconds

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

A Study on the Orientation and the Roughness with the Deposition Condition of AIN Thin Films Prepared by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법에 의해 합성된 AIN 박막의 공정조건에 따른 우선 배향성 및 평탄성에 관한 연구)

  • Lee, Min-Geon;Chang, Dong-Hoon;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1023-1028
    • /
    • 2004
  • We fabricated AIN thin film by using RF magnetron sputtering and studied the structural characteristic of AIN thin film with the change of the deposition conditions such as Ar/$N_2$ flow ratio, working pressure, and the distance between substrate and target. The orientation and surface roughness of AIN thin film were studied by using XRD and AFM. We can not identify the orientation of the thin film deposited in Ar, while we obtained the (l00) orientation of the thin film with the addition of $N_2$. Especially, the thin film deposited at 18/2 (seem) of Ar/$N_2$ flow ratio exhibited to be the most (100) oriented. The (100) orientation of thin film becomes weaker as the working pressure becomes higher. The further distance between substrate and target is stronger the (100) orientation of the thin film, but the (100) orientation becomes weaker and (002) orientation started to appear as the distance is shorter. The surface roughness of the thin film deposited at 50$0^{\circ}C$ in Ar only is 1.1 nm, while very smooth thin film of 0.4~0.6 nm is obtained with the addition of $N_2$.

A study on an experimental basis a special quality character of thin film use in order to TiN a conditioned immersion (TiN증착 조건에 따른 박막의 특성에 대한 실험적 연구)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4711-4717
    • /
    • 2011
  • Formation of TiN films by PVD method and the DC and RF sputtering deposition method can be applied, the injected gas to generate plasma ionization rate of the film forming speed is slow away, anything to increase the adhesion between films limitations have. To improve this, to investigate the deposition and ion beam evaporation simultaneously IBAD(Ion beam assisted deposition) when used, Ion beam surface coating material prior to the survey because the surface cleaning effect of a large, high film adhesion can be obtained. In addition, the high vacuum and low temperature, high purity thin film of uniform thickness in the benefits is.

Characteristics of Thin Films Fabricated by Using the Layer-by-Layer Sputtering and Evaporation Method (순차 스퍼터 법과 증발 법으로 제작한 박막의 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.571-574
    • /
    • 2003
  • The thin films fabricated by using the layer-by-layer sputtering was compared with the thin film fabricated by using the evaporation method. Re-evaporation in the form of Bi atoms or $Bi_2O_3$ molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer-by-layer deposition. On the other hand, the respective atom numbers corresponding to BiSrCaCuO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BiSrCaCuO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

A study on nano-scale friction of hydrogenated amorphous carbon for application in MEMS (MEMS 적용을 위한 비정질 상 탄소박막의 나노 스케일 마찰력 특성연구)

  • 고명균;박종완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1211-1214
    • /
    • 2003
  • The film is prepared by electron cyclotron resonance chemical vapor deposition (ECRCVD) employing CH$_4$ and H$_2$ gases. It is deposited by the control of microwave plasma power, gas flow ratio, deposition pressure, and In-situ thermal treatment temperature. The structure of a-C:H (hydrogenated amorphous carbon) thin film is analysed by FT-IR spectroscopy. The fraction sp$^3$ versus sp$^2$ bonding is very important to clear up the surface and interrace of a-C:H film properties such as nano-scale friction behavior. The sp$^3$ versus sp$^2$ bonding of a-C:H thin film is dependent on the deposition conditions, therefore. nano-scale friction behavior is dependent on the deposition conditions.

  • PDF

The Effect of Deposition Rate on In-Situ Intrinsic Stress Behavior in Cu and Ag Thin Films (증착 속도 변화에 따른 구리와 은 박막의 실시간 고유응력 거동)

  • Ryu, Sang;Lee, Kyungchun;Ki, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.283-288
    • /
    • 2008
  • We observed the in-situ stress behavior of Cu and Ag thin films during deposition using a thermal evaporation method. Multi-beam curvature measurement system was used to monitor the evolution of in-situ stress in Cu and Ag thin films on 100 Si(100) substrates. The measured curvature was converted to film stress using Stoney formula. To investigate the effects of the deposition rates on the stress evolution in Cu and Ag thin films, Cu and Ag films were deposited at rates ranging from 0.1 to $3.0{\AA}/s$ for Cu and from 0.5 to $4.0{\AA}/s$ for Ag. Both Cu and Ag films showed a unique three stress stages, such as 'initial compressive', 'a tensile maximum' and followed by 'incremental compressive' stress. For both Cu and Ag films, there is no remarkable effect of deposition rate on the thickness and average stress at the tensile maximum. There is, however, a definite decrease in the incremental compressive stress with increasing deposition rate.

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Effects of Deposition Conditions on the Properties of Amorphous Carbon Nitride Thin Films by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 특성에 미치는 증착변수의 영향)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.150-154
    • /
    • 2003
  • Amorphous carbon nitride films were deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition technique (PECVD) using $CH_4$and $N_2$as reaction gases. The growth and film properties were investigated while the gas ratio and the working pressure were changed systematically. At 1 Torr working pressure, an increase in the $N_2$partial pressure results in a significant increase of the deposition rate as well as an apparent presence of C ≡N bonding, while little affecting the microstructure and amorphus nature of the films. In the case of changing the working pressure at a fixed $N_2$partial pressure of 98%, a film grown at a medium pressure of $1${\times}$10^{-2}$ Torr shows the most prominent C=N bonding nature and photoluminescent property.

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF