• Title/Summary/Keyword: Thin Film Deposition

Search Result 2,985, Processing Time 0.031 seconds

Ambient Oxygen Effects on the Growth of ZnO Thin Films by Pulsed Laser Deposition

  • Park, Jae-Young;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.303-307
    • /
    • 2007
  • ZnO thin films were prepared by pulsed laser deposition on amorphous fused silica substrates at different ambient $O_2$ pressures varying from 0.5 to 500 mTorr, to observe the effect of ambient gas on their crystalline structure, morphology and optical properties. Results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence studies showed that crystallinity, surface features and optical properties of the films significantly depended on the oxygen background pressure during growth. A low oxygen pressure (0.5 mTorr) seems to be suitable for the growth of highly c-axis oriented and smoother films possessing a superior luminescent property. The films grown at the higher $O_2$ pressures (50-500 mTorr) were found to have many defects probably due to an excessive incorporation of oxygen into ZnO lattice. We speculate that the film crystallinity could be affected by the kinetics of atomic arrangement during deposition at the higher oxygen pressures.

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • 안인순;천민우;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Effects of the Deposition Rate of Pentacene Film on the Electrical Characteristics of Organic Thin-film Transistors

  • Park, Jae-Hoon;Lee, Yong-Soo;Kang, Chang-Heon;Kim, Yeon-Ju;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.649-652
    • /
    • 2003
  • Organic thin-film transistors were fabricated using pentacene as an active electronic material. Device characteristics are improved with increasing the deposition rate of pentacene. It is observed that the deposition rate influences on the interface properties between pentacene and polystyrene, and the molecular ordering of pentacene film. In this paper, we report the effects of the deposition rate of pentacene film on the device performance.

  • PDF

Crystallization Behavior and Electrical Properties of BNN Thin Films by IBSD Process

  • Lou, Jun-Hui;Jang, Jae-Hoon;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.960-964
    • /
    • 2004
  • [ $Ba_2NaNb_5O_{15}$ ](BNN) thin films have been prepared by the ion beam sputter deposition (IBSD) method on Pt coated Si substrate at temperature as low as $600^{\circ}C$ XRD, SEM were used to investigate the crystallization and microstructure of the films. It was found that the films were crack-free and uniform in microstructure. The electric properties of thin films were carried out by observation of D-E hysteresis loop, dielectric constant and leakage current. It was found the deposition rate strongly influenced the phase formation of the films, where the phase of $BaNb_2O_6$ was always formed when the deposition rate was high. However, the single phase (tungsten bronze structure ) BNN thin film was obtained with the deposition rate as low as $22{\AA}/min$. The remanent polarization Pr and dielectric constant are about 1-2 ${\mu}C/cm^2$ and $100\sim200$, respectively. It was also founded the electric properties of thin films were influenced by the deposition rate. The Pr and dielectric constant of films increased with the decrease of deposition rate. The effects of annealing temperature and annealing time to the crystallization behavior of films were studied. The crystallization of thin film started at about $600^{\circ}C$. The adequate crystallization was gotten at the temperature of $650^{\circ}C$ when the annealing time is 0.5 hour or at the temperature of $600^{\circ}C$ when the annealing time is long as 6 hours.

  • PDF

Dielectric Characteristic by Phase Transition of Fabricated PVDF thin film through Vapor Deposition Method (진공증착법에 의해 제조된 PVDF 박막의 상변화에 따른 유전특성)

  • 임응춘;박수홍;조기선;이덕출;성낙진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.150-153
    • /
    • 1996
  • Polyvinylidene fluoride(PVDF) thin films are fabricated by vapor deposition method and their dielectric characteristics are investigated. At electric field near 4MV/m, a phase transition occur with polar ${\alpha}$ . In accordance to increasing temperature, the dielectric relaxation of PVOF thin films show from 70Hz to 104Hz. This result correspond to Debye's theory[1]. Activation energy of PVDP thin film is 21Kca1/mo1.

  • PDF

Interface Passivation Properties of Crystalline Silicon Wafer Using Hydrogenated Amorphous Silicon Thin Film by Hot-Wire CVD (열선 CVD법으로 증착된 비정질 실리콘 박막과 결정질 실리콘 기판 계면의 passivation 특성 분석)

  • Kim, Chan-Seok;Jeong, Dae-Young;Song, Jun-Yong;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyoung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Yi, Jun-Sin;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.172-175
    • /
    • 2009
  • n-type crystalline silicon wafers were passivated with intrinsic a-Si:H thin films on both sides using HWCVD. Minority carrier lifetime measurement was used to verify interface passivation properties between a-Si:H thin film and crystalline Si wafer. Thin film interface characteristics were investigated depending on $H_2/SiH_4$ ratio and hot wire deposition temperature. Vacuum annealing were processed after deposition a-Si:H thin films on both sides to investigate thermal effects from post process steps. We noticed the effect of interface passivation properties according to $H_2/SiH_4$ ratio and hot wire deposition temperature, and we had maximum point of minority carrier lifetime at H2/SiH4 10 ratio and $1600^{\circ}C$ wire temperature.

  • PDF

Fabrication of Thin $YBa_{2}Cu_{3}O_{7-\delta}$ Films on $CeO_2$Buffered Sapphire Substrate Using Combined Sputter and Pulsed Laser Deposition (스퍼터링과 펄스 레이저를 이용하여 $CeO_2$완충층 위에 층착된 $YBa_{2}Cu_{3}O_{7-\delta}$박막의 제작)

  • 곽민환;강광용;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.901-904
    • /
    • 2001
  • For the c-axis oriented epitaxial YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin film on r-cut sapphire substrate it is necessary to deposit buffer layers. The CeO$_2$buffer layer was deposited on sapphire substrate using RF magnetron sputtering system. We investigated XRD pattern of CeO$_2$thin films at various sputtering conditions such as sputtering gas ratio, sputtering power, target to substrate distance, sputtering pressure and substrate temperature. The optimum condition was 15 mTorr with deposition pressure, 1:1.2 with $O_2$and Ar ratio and 9cm with target to substrate distance. The CeO$_2$(200) peak was notable for a deposition temperature above 75$0^{\circ}C$. The YBa$_2$Cu$_3$O$_{7-{\delta}}$ was deposited on CeO$_2$buffered r-cut sapphire substrate using pulsed laser ablation. The YBa$_2$Cu$_3$O$_{7-{\delta}}$CeO$_2$(200)/A1$_2$O$_3$thin film was exhibited a critical temperature of 89K.xhibited a critical temperature of 89K.

  • PDF

A Study on Organic/Inorganic Materials Deposition Using SAW-ED System (SAW-ED 시스템을 이용한 유/무기 소재 증착에 관한 연구)

  • Kim, Hyun Bum;Kim, Kyung Hwan;Ghayas, Siddiqi;Lim, Jong Hwan;Yang, Hyoung Chan;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.100-108
    • /
    • 2016
  • In various industries, many researches studies have been done in using nano thin film fabrication technology. In the field of printed electronics, various electronic devices can be fabricated using a direct printing process of on multiple functional materials. It has the advantages of low prices, environment-friendly environmentally friendly, flexibleility, large scale, mass production produced, simple process and so on. In this study, a viable thin film fabrication technology has beenwas introduced using the surface acoustic wave mechanism for thin film deposition. Fabrication of thin films using organic, inorganic and composite of organic/inorganic materials have been were analyzed through the experimental research. In this experiment, organic material MEH:PPV, inorganic material ZnO and composite material MEH:PPV/ZnO have been depo sited as thin films.