• Title/Summary/Keyword: Thin Film Deposition

Search Result 2,985, Processing Time 0.027 seconds

Filtered Plasma Deposition and MEVVA Ion Implantation

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.46-48
    • /
    • 2003
  • The modification of metal surface by ion implantation with MEVVA ion implanter and thin film deposition with filtered vacuum arc plasma device is introduced in this paper. The combination of ion implantation and thin film deposition is proved as a better method to improve properties of metal surface.

A Study on the curing characteristics of 6FDA/4-4' DDE Polyimide thin film fabricated by vapor deposition polymerization (진공증착중합에 의해 제조된 6FDA/4-4' DDE 폴리이미드 박막의 열처리 특성에 관한 연구)

  • Hwang, S.Y.;Lee, B.J.;Kim, H.G.;Kim, J.T.;Kim, Y.B.;Park, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.816-818
    • /
    • 1998
  • In this paper Polyimide(PI) thin film are fabricated by vapor deposition polymerization(VDP) of dry process which are easy to control the film's thickness and hard to pollute due to volatile solvent. The FT-IR spectrum show that PAA thin films fabricated by VDP are changed to PI thin film by thermal curing. From AFM(Atomic Force Microscopy) experimental as the higher curing temperature. the thin film thickness decreases and roughness decresse.

  • PDF

Effect of deposition on the properties of diamond thin films synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition (MPCVD에 의해 합성된 다이아몬드 박막 특성에 대한 증착조건의 영향)

  • Lee, Byoung-Soo;Lee, Duch-Chool
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this study, the metastable state diamond thin films have been deposited on Si substrates from methane-hydrogen and oxygen mixture using microwave plasma enhanced chemical vapor deposition (MPCVD) method. Effects in experimental parameters of MPCVD including methane concentrations, oxygen additions, operating pressure, deposition time on the growth rate and crystallinity were investigated. Diamond thin film was synthesized under the following conditions: methane concentration of 0.5%(0.5sccm)~5%(5sccm), oxygen concentration of 0~80%(2.4sccm), operating pressure of 30Torr~70Torr, deposition time of 1~32hr. SEM, XRD, and Raman spectroscopy were employed to analyze the growth rate and morphology, crystallinity and prefered growth direction, and relative amounts of diamond and non-diamond phases, respectively.

XRD Patterns and Bismuth Sticking Coefficient in $Bi_2Sr_2Ca_nCu_{n+1}O_y(n\geq0)$ Thin Films Fabricated by Ion Beam Sputtering Method

  • Yang, Seung-Ho;Park, Yong-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.158-161
    • /
    • 2006
  • [ $Bi_2Sr_2Ca_nCu_{n+1}O_y(n{\geq}0)$ ] thin film is fabricatedvia two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

Deposition of Tungsten Thin Film on Silicon Surface by Low Pressure Chemical Vapor Deposition Method (저압 화학 기상 증착법을 이용한 실리콘 표면 위의 텅스텐 박막의 증착)

  • Kim, Seong Hun
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.473-479
    • /
    • 1994
  • Tungsten thin film was deposited on p-(100) silicon substrate by using the LPCVD(low pressure chemical vapor deposition) technique. $WF_6$ was used as a source gas for tungsten and $SiH_4$ was used as a reducing gas for $WF_6$. Tungsten thin film was deposited by either SiH4 or Si substrate reduction of $WF_6$ under cold-wall condition and it was deposited by $SiH_4$ reduction of $WF_6$ under hot-wall condition. The crystal structure of deposited thin film under both conditions were identified to be bcc (body centered cubic). The physical and electrical properties of deposited thin films were investigated. The deposited film under hot-wall condition changed to $WSi_2$ film by the annealing under $800^{\circ}C.$ From the experimental results and theoretical considerations, the change of the crystal structure of the thin film by annealing was discussed. $WSi_2$ thin film, which was known to have good compatibility with Si substrate, could be produced under hot-wall condition although the film properties were superior under cold-wall condition.

  • PDF

The Effects of the Processing Parameters on the Structure of IZO Transparent Thin Films Deposited by PLD Process (PLD를 이용한 IZO 투명전극의 결정구조에 영향을 미치는 공정인자에 대한 연구)

  • Kim, Pan-Young;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.317-318
    • /
    • 2007
  • In this study, transparent conducting oxide indium zinc oxide (IZO) thin films were deposited by pulsed laser deposition (PLD) Process as a function of the deposition time on the glass substrates at $400^{\circ}C$. The crystal structures, electrical and optical properties of IZO films analyzed by XRD, AFM, and UV spectrometer. High quality IZO thin film with the resistivity of $9.1{\times}10^{-4}$ ohm cm and optical transmittance over 85% was obtained for sample when deposition time was 15min. Thin films with the preferred orientations along the c axis were observed as the deposition time increased.

  • PDF

Physical properties of TiN thin films deposited by grid-assisted magnetron sputtering

  • Jung, Min J.;Nam, Kyung-H.;Han, Jeon-G.;Shaginyan, Leonid-R.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.46-46
    • /
    • 2002
  • It is well known that thin film growth and surface morphology can be substantially modified by ion-bombardment during the deposition. This is particularly important in case of thin-film deposition at low temperatures where the film growth occurs under highly nonequilibrium conditions. An attractive way to promote crystalline growth and surface morphology is deposition of additional energy in to the surface of the growing film by bombardment with hyperthermal particles. We were deposited crystalline Ti and TiN thin films on Si substrate by magnetron sputtering method with grid. Its thin films were highly smoothed and dense as increasing grid bias. In order explore the benefits of a bombardment of the growing film with high energetic particles. Ti and TiN films were deposited on Si substrates by an unbalanced magnetron sputter source with attached grid assembly for energetic ion extraction. Also, we have studied the variation of the plasma states by Langmuir probe and Optical Emission Spectroscopy (OES). The epitaxial orientation. microstructual characteristics. electrical and surface properties of the films were analyzed by XRD. SEM. Four point probe and AFM.

  • PDF

Study on the Ag Thin Film Layer Deposition of the YBCO Coated Conductor Using a Plasma Surface Treatment (플라즈마 표면처리를 이용한 YBCO Coated Conductor의 Ag 박막층 증착에 관한 연구)

  • Jeong, Hyun-Gi;Yang, Sung-Chae;Choi, Byoung-Jung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.32-36
    • /
    • 2017
  • The Ag thin film of YBCO (yttrium barium copper oxide) CC (coated conductor) protect the YBCO layer and, at the same time, affects the electrical characteristics of the YBCO CC. Therefore, YBCO CC with the commercialization of the Ag thin film layers makes it easy to establish a process, it can lead to a variety of characteristic changes in YBCO CC. In this paper, plasma surface treatment was carried out to facilitate the deposition of the Ag thin film and the deposition process of YBCO CC. Surface roughness from the test results was increased as the time of the plasma surface treatment increased from 5 to 20 minutes. On the other hand, the surface roughness was decreased for the time of the plasma surface treatment over 20 minutes. Furthermore, after depositing, the increasing of deposit amount and reduced lifting phenomenon showed a similar tendency with the rise time of surface roughness.

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.