• Title/Summary/Keyword: Thin Film, Sensor

Search Result 657, Processing Time 0.023 seconds

The Concentration-Dependent Distribution of Tris(4,7'-diphenyl-1,10'-phenanthroline) Ruthenium (II) within Sol-Gel-Derived Thin Films

  • Lee, Joo-Woon;Cho, Eun-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2765-2770
    • /
    • 2011
  • Organic dye-doped glasses, viz., ruthenium (II) tris(4,7'-diphenyl-1,10'-phenanthroline) $[Ru(dpp)_3]^{2+}$ incorporated into thin silica xerogel films produced by the sol-gel method, were prepared and their $O_2$ quenching properties investigated as a function of the $[Ru(dpp)_3]^{2+}$ concentration (3-400 ${\mu}M$) within the xerogel. The ratio of the luminescence from the $[Ru(dpp)_3]^{2+}$-doped films in the presence of $N_2$ and $O_2$ ($I_{N2}/I_{O2}$) was used to describe the film sensitivity to $O_2$ quenching. ($I_{N2}/I_{O2}$ changed three-fold over the $[Ru(dpp)_3]^{2+}$ concentration range. Time-resolved intensity decay studies showed that there are two discrete $[Ru(dpp)_3]^{2+}$ populations within the xerogels (${\tau}_1$ ~ 300 ns; ${\tau}_2$ ~ 3000 ns) whose relative fraction changes as the $[Ru(dpp)_3]^{2+}$ concentration changes. The increased $O_2$ sensitivity that is observed at the higher $[Ru(dpp)_3]^{2+}$ concentrations is a manifestation of a greater fraction of the 3000 ns $[Ru(dpp)_3]^{2+}$ species (more susceptible to $O_2$ quenching). A model is presented to describe the observed response characteristics resulting from $[Ru(dpp)_3]^{2+}$ distribution within the xerogel.

Characterization of Hydrogen Gas Sensitivity of TiO2 Thin Films with Electron Beam Irradiation (전자빔 열처리에 따른 TiO2 박막의 수소가스 검출 특성 연구)

  • Heo, S.B.;Lee, H.M.;Jung, C.W.;Kim, S.K.;Lee, Y.J.;Kim, Y.S.;You, Y.Z.;Kim, D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • $TiO_2$ films were deposited on a glass substrate with RF magnetron sputtering and then surface of $TiO_2$ films were electron beam irradiated in a vacuum condition to investigate the effect of electron bombardment on the thin film crystallization, surface roughness and gas sensitivity for hydrogen. $TiO_2$ films that electron beam irradiated at 450eV were amorphous phase, while the films irradiated at 900 eV show the anatase (101) diffraction peak in XRD pattern. AFM measurements show that the roughness is depend on the electron irradiation energy. As increase the hydrogen gas concentration and operation temperature, the gas sensitivity of $TiO_2$ and $TiO_2$/ZnO films is increased proportionally and $TiO_2$ films that electron beam irradiated at 900 eV show the higher sensitivity than the films were irradiated at 450eV. From the XRD pattern and AFM observation, it is supposed that the crystallization and rough surface promote the hydrogen gas sensitivity of $TiO_2$ films.

Characteristics of polycrystalline 3C-SiC thin films grown on AlN buffer layer for M/NEMS applications (AlN 버퍼층위에 성장된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San;Lee, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.457-461
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on $SiO_{2}$ and AlN substrates, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each substrate were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_{2}$ and AlN were not different. However, their electron mobilities were $7.65{\;}cm^{2}/V.s$ and $14.8{\;}cm^{2}/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_{2}$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

Fabrication of the pyramid-type silicon tunneling devices for displacement sensor applications (변위센서응용을 위한 피라미드형 실리콘 턴널링소자의 제조)

  • Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.177-181
    • /
    • 2000
  • The tunneling current is exponentially dependent on the separation gap between a pair of conductors. The detection of displacement can be, therefore, carried out by measurment of a variation in the tunneling current. In this experiment, we fabricated pyramid-type silicon tunneling devices in which a tunneling current flow between a micro-tip and $Si_3N_4$ thin film membrane. A MEMS process was used for the fabrication of the tunneling devices. The micro-tips were formed on Si wafers by undercutting a differently oriented square of $SiO_2$ with KOH. The stiffness of the $Si_3N_4$ films were observed and the model for the stiffness calculation, which is useful in predicting the stiffness even when the stiffness ranges beyond the scope of the normal experimental condition, was suggested.

  • PDF

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Hydrophilic Graphite Nanoparticles Synthesized by Liquid Phase Pulsed Laser Ablation and Their Carbon-composite Sensor Application (액상 펄스 레이저 어블레이션에 의한 친수성 그라파이트 나노입자의 제조 및 센서 응용)

  • Choi, Moonyoul;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.236-241
    • /
    • 2012
  • It is widely recognized that it is hard to prepare hydrophilic graphite nanoparticles because of their high crystallinity and inert characteristics. In this study, we successfully synthesized the hydrophilic graphite nanoparticles by using liquid phase pulsed laser ablation method which has been actively employed for the thin film deposition up to now. The obtained hydrophilic graphite showed an ultra-high dispersion stability in water, because the hydrophilic functional groups like carboxyl and carbonyl group was simultaneously introduced onto the graphite surface with the nanoparticle formation, as confirmed by FT-IR and zeta potential measurements. Finally, a markedly enhanced gas sensing ability for acetone was shown in comparison with the conventional carbon black for the carbon polymer composite sensor with polyethyleneglycol (PEG).

A Study on the Fabrication of Multi-Walled Nanotubes (MWCNT) Based Thin Film and Chemical Sensor Operation Characteristics (Multi-Walled Carbon Nanotubes (MWCNT) 인쇄박막의 제작과 화학센서 동작 특성에 관한 연구)

  • Noh, Jae Ha;Choi, Junseck;Ko, Dongwan;Seo, Joonyoung;Lee, Sangtae;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.181-185
    • /
    • 2020
  • Hazardous and noxious substance (HNS) detection sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) and various binder materials for ion batteries. To obtain uniformly printed films, the printing precision according to the substrate cleaning method was monitored, and the printing paste mixing ratio was investigated. Binders were prepared using styrene butadiene rubber + carboxymethyl cellulose (SBR+CMC), polyvinylidene fluoride + n-methyl-2-pyrrolidene (PVDF+NMP), and mixed with MWCNTs. The surface morphology of the printed films was examined using an optical microscope and a scanning electron microscope, and their electrical properties are investigated using an I-V sourcemeter. Finally, sensing properties of MWCNT printed films were measured according to changes in the concentration of the chemical under the various applied voltages. In conclusion, the MWCNT printed films made of (SBR+CMC) were found to be feasible for application to the detection of hazardous and noxious chemicals spilled in seawater.

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Characterization to flammable gas $\alpha$-$Fa_{2}O_{3}/SnO_{2}$ system thin film fabricated by APCVD (APCVD법에 위해 제조된 $\alpha$-$Fa_{2}O_{3}/SnO_{2}$계 박막의 가연성 가스 감지 특성 평가)

  • 심성은;이세훈;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.105-110
    • /
    • 2000
  • The $\alpha$-$Fa_{2}O_{3}/SnO_{2}$ thin film gas sensor was fabricated by APCVD and heat treated. The gas sensitivity to flammable gases ($CH_4$, $H_2$, LPG) was measured. This device was to heat treatment at $400^{\circ}C$, $450^{\circ}C$, $500^{\circ}C$, $550^{\circ}C$, $600^{\circ}C$ for 2 h to enhance the gas sensitivity. The heat treated device at $500^{\circ}C$ for 2 h had the best properties and especially it shows high sensitivity to H2 gas. The sensitivity to gases was studied in the temperature range from lOoC to $300^{\circ}C$ in order to find the optimum detection temperature. In the range of detection from 500 ppm to 10,000 ppm at $175^{\circ}C$ the fabricated device showed that the gas sensitivity to $H_2$ was from 62%~76% and to $CH_4$ was from 16 %~58% and to LPG was from 8%~37 %. The sensitivity difference between heat treated device and as fabricated one was about 10 8 The long-term stability to LPG at 1,000 ppm was converged to sensitivity of 30 %.

  • PDF