• 제목/요약/키워드: Thin Film, Sensor

검색결과 657건 처리시간 0.019초

CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장 (Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD)

  • 정귀상;김강산;정준호
    • 센서학회지
    • /
    • 제16권2호
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

고온용 압저항센서용 크롬산화박막의 특성 (Characteristics of chromium oxide thin-films for high temperature piezoresistive sensors)

  • 서정환;노상수;이응안;정귀상;김광호
    • 센서학회지
    • /
    • 제14권1호
    • /
    • pp.56-61
    • /
    • 2005
  • This paper present characteristics of chromium oxide thin-film as piezoresistive sensors, which were deposited on Si substrates by DC reactive magnetron sputtering in an argon-Oxide atmosphere for high temperature applications. The chemical composition, physical and electrical properties and thermal stability ranges of the $CrO_{x}$ sensing elements have studied. $CrO_{x}$ thin films with a linear gauge factor(GF${\fallingdotseq}$15), high electrical resistivity (${\rho}$ = $340{\mu}{\Omega}cm$) and TCR<-55 ppm/$^{\circ}C$ have been obtained. These $CrO_{x}$ thin films may allow high temperature pressure sensor miniaturization to be achieved.

R.F. Magnetron Sputtering 법을 이용한 SnO2 박막 센서의 제조 및 알콜 감도 특성 (Fabrication of the SnO2 thin-film gas sensors using an R.F. magnetron sputtering method and their alcohol gas-sensing characterization)

  • 박상현;강주현;유광수
    • 센서학회지
    • /
    • 제14권2호
    • /
    • pp.63-68
    • /
    • 2005
  • The nano-grained Pd or Pt-doped $SnO_{2}$ thin films were deposited on the alumina substrate at ambient temperature or $300^{\circ}C$ by using an R.F. magnetron sputtering system and then annealed at $650^{\cir}C$ for 1 hour or 4 hours in air. The crystallinity and microstructure of the annealed films were analyzed. A grain size of the thin films was 30 nm to 50 nm. As a result of gas sensitivity measurements to an alcohol vapor of $36^{\circ}C$, the 2 wt.% Pt-doped $SnO_{2}$ thin-film sensor deposited at $300^{\circ}C$ and annealed at $650^{\circ}C$ for 4 hours showed the highest sensitivity.

Development of a Tactile Sensor Array with Flexible Structure Using Piezoelectric Film

  • Yu, Kee-Ho;Kwon, Tae-Gyu;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1222-1228
    • /
    • 2002
  • This research is the development of a flexible tactile sensor array for service robots using PVDF (polyvinylidene fluoride) film for the detection of a contact state in real time. The prototype of the tactile sensor which has 8${\times}$8 array using PVDF film was fabricated. In the fabrication procedure, the electrode patterns and the common electrode of the thin conductive tape were attached to both sides of the 281$\mu\textrm{m}$ thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for a stable structure. The proposed fabrication method is simple and easy to make the sensor. The sensor has the advantages in the implementing for practical applications because its structure is flexible and the shape of the each tactile element can be designed arbitrarily. The signals of a contact force to the tactile sensor were sensed and processed in the DSP system in which the signals are digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in a personal computer, and the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of the contact state was verified through the sensing examples.

압전세라믹 기판과 고자왜박막을 결합한 스마트액츄에이타 (Smart Actuators Composed of Piezoelectric Ceramics and Highly Magnetostrictive films)

  • 신광호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권5호
    • /
    • pp.289-293
    • /
    • 2000
  • This paper presents a study on the linear compensation of nonlinear hysteric actuators using the highly magnetostrictive film pattern as a strain sensor. Elements had a hybrid structure, in which thin soft glass substrate with the highly magnetostrictive amorphous FeCoSiB film was bonded on the PZT piezoelectric substrate. The magnetostrictive film as a strain sensor detects the deflection of an actuator, and a voltage signal from the strain sensor related to the deflection of an actuator is used for the linear control of an actuator.

  • PDF

압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지 (Realtime Detection of Damage in Composite Structures by Using PVDE Sensor)

  • 권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성 (Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation)

  • 지인걸;한규석;오재희;고태경
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

ZnO:In 박막 $NH_3$ 가스센서의 제작 및 특성 (Fabrication and Characteristics of ZnO:In Thin Film $NH_3$ Gas Sensor)

  • 김진해;전춘배;박기철
    • 센서학회지
    • /
    • 제8권3호
    • /
    • pp.274-282
    • /
    • 1999
  • 암모니아가스에 민감한 In이 도핑된 ZnO(ZnO:In) 박막을 In 박막($100\;{\AA}$) 및 ZnO박막($3000\;{\AA}$)의 연속적인 증착과 열처리공정을 통하여 제조하였다. 기판은 $1000\;{\AA}$의 산화막이 열적으로 성장되어 있는 Si 기판을 사용하였다. In/ZnO 박막 이중층의 열처리온도에 따른 구조적 및 전기적 특성을 X-선회절기, 주사전자현미경 및 4점측정시스템을 통하여 조사하였다. 이들 막에 대하여 열처리온도에 따른 암모니아가스에 대한 감도, 선택성 및 시간응답특성을 구하였다. 열처리온도 $400^{\circ}C$, 동작온도 $300^{\circ}C$에서 100 ppm의 암모니아가스를 주입한 결과 140%의 최대감도를 나타내었으며 CO, $NO_x$ 가스에 대한 감도는 아주 낮은 것으로 나타났다.

  • PDF

PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성 (Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method)

  • 이홍찬;심광보;오영제
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

InGaZnO 용액의 농도가 Drop-casting으로 제작된 산화물 박막 트랜지스터의 전기적 특성에 미치는 영향 (Effect of InGaZnO Solution Concentration on the Electrical Properties of Drop-Cast Oxide Thin-Film Transistors)

  • 노은경;유경민;김민회
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.332-335
    • /
    • 2020
  • Drop casting, a solution process, is a simple low-cost fabrication technique that does not waste material. In this study, we elucidate the effect of the concentration of a InGaZnO solution on the electrical properties of drop-cast oxide thin-film transistors. The higher the concentration the larger the amount of remnant InGaZnO solutes, which yields a thicker thin film. Accordingly, the electrical properties were strongly dependent on the concentration. At a high concentration of 0.3 M (or higher), a large current flowed but did not lead to switching characteristics. At a concentration lower than 0.01 M, switching characteristics were observed, but the mobility was small. In addition to a high mobility, sufficient switching characteristics were obtained at a concentration of 0.1 M owing to the appropriate thickness of the semiconductor layer. This study provides a technical basis for the low-cost fabrication of switching devices capable of driving a sensor array.