• Title/Summary/Keyword: Thickness reduction

Search Result 1,457, Processing Time 0.027 seconds

Reduction of thickness of steel strip applied for Inner Magnetic Shields (of CRT) manufacturing from 0,15mm to 0,1mm.

  • Leonov, Evgeny A.;Zubov, Valery I.;Uvarov, Boris N.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1072-1073
    • /
    • 2002
  • We report using thin steel strip (0,1mm) for manufacturing Inner Magnetic Shield of CRT. Here we report that the reducing of steel strip thickness from 0,15mm to 0,1mm is possible as for one-piece IMS and for two-piece IMS without any reflection on quality of CRT. Also we report about advantages, which the producer of CRT could reach using steel with lowed carbon content up to 0,0005% by mass.

  • PDF

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Kang, Min-Gu;Song, Hee-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.194-198
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 80% of the market, despite the development of various thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon materials remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner the silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials with different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With less amount of paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 120 micron thickness of the wafer even though the conversion efficiency decrease by 0.5% occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al layer application.

A Study on the Forming Characteristic of Inner Pyramid Structure Bonded Sheet Metal (피라미드형 내부구조재를 가지는 중공형 접합판재의 성형특성에 관한 연구)

  • Kim, J.Y.;Kil, H.Y.;Cho, G.C.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.295-299
    • /
    • 2006
  • The inner-structure bonded(ISB) sheet metal is defined as a composite sheet metal which has middle layer of truss-structure between two skin sheets. The characteristics such as ultra-light weight, high rigidity, high strength, etc are required especially for automobile parts. The characteristic of ISB sheet metal depends on inner-structure pattern or method of bonding. Pyramid type of crimped expanded metal is used for inner-structure and both of resistance welding and adhesive bonding are applied to make a specimen. As a result of compression test, it is appeared that forming limit is 10% reduction in thickness under a load of 8kgf per unit element(one inner-structure). In case of uniaxial tensile test the non-uniform surface integrity rather than the buckling of inner-structure happened at a load of 450kgf, which indicates elongation of 7.2% and thickness reduction of 13%. The eye-inspection method was applied to examine the defects occurring on the specimen during stretch forming. In case of biaxial stretch forming only the non-uniform deformation on the surface of a skin sheet could be observed. The forming limit in stretching of ISB sheet metal with the hemi-spherical punch of 150mm in diameter was 3mm in forming depth and 5% reduction in thickness.

  • PDF

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Cold Rolling (냉간압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.113-117
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at $200{\sim}900^{\circ}C$. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at $500{\sim}700^{\circ}C$ was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at $400^{\circ}C$, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.

Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

Effects of Thickness and Defects of DLC Coating Layer on Corrosion Resistance of Metallic Bipolar Plates of PEMFCs (PEMFC 금속분리판의 내식성에 미치는 DLC 코팅층의 두께 및 결함의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.235-245
    • /
    • 2024
  • DLC coatings have been widely applied in industrial fields that require high corrosion resistance due to their excellent mechanical characteristics and chemical stability. In this research, effects of DLC coating thickness and defects on corrosion resistance were investigated for application of metallic bipolar plates in polymer membrane electrolyte fuel cells (PEMFCs). Results revealed that a DLC coating thickness of 0.7 ㎛ could lead to a defect size reduction of about 75.9% compared to that of 0.3 ㎛.As a result of potentiodynamic polarization experiments, the current density under a potential of 0.6 V was measured to be less than 1 ㎂/cm2,which was an excellent value. Inparticular, the delamination ratio and the decrease rate of maximum pitting depth were up to 84.8% and 63.3%, respectively, with an increase in the DLC coating thickness. These results demonstrate that DLC coating thickness and defects are factors that can affect corrosion resistance of DLC coating and its substrate.

Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production (광량 및 TiO2 나노튜브 길이별 광활성 연구: Cr(VI)환원 및 수소제조)

  • Joo, Hyun-Ku;Shim, Eun-Jung;Lee, Jae-Min;Yoon, Jae-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of HCC AZ31 Alloy Plate (압연조건에 따른 AZ31 연주판재의 미세조직 및 기계적 특성 변화)

  • Kim, Young Min;Chun, Eun Young;Yim, Chang Dong;You, Bong Sun;Lee, Je-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The changes in microstructure and mechanical properties of AZ31 alloy subjected hot-rolling process were investigated. The AZ31 plates fabricated by horizontal continuous casting process were prepared and have hot-rolled from 30 mm to 1 mm in thickness under different processing conditions. At the rolling temperature of $400^{\circ}C$, little surface and side crack was observed up to 20% reduction rate. As total reduction and reduction rate increase to more than 75% and 20% pass, respectively, Grains were more uniformly refined through overall thickness, and particularly lots of shear bands were appeared to be inclined at less than $20^{\circ}C$ along the rolling direction. Average grain size of less than $5{\mu}m$ and tensile properties of YS ${\geq}$ 250 MPa, UTS ${\geq}$ 300 MPa and El. ${\geq}$ 13% were acquired for hot-rolled AZ31 sheets without post-heat treatment. Maximum intensity of (0002) pole figure was decreased with an increase in reduction rate, indicating the improvement of texture by means of high reduction rate.

An Empirical Formulation for Predicting the Thickness of Multilayer PCB (다층 PCB의 두께 예측을 위한 실험식 도출 연구)

  • Kim, Nam-Hoon;Han, Gwan-Hee;Lee, Min-Su;Kim, Hyun-Ho;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.182-187
    • /
    • 2022
  • In this paper, the thickness of a multilayer PCB was predicted through an empirical formulation based on the physical properties of the prepreg used in multilayer PCB. Since the thickness of prepreg reduction when manufacturing a PCB due to the physical properties and copper foil residual rate, it is necessary to accurately predict the thickness of the PCB through the thickness empirical formulation. To determine the density of the prepreg, the mass and thickness of the prepreg were measured. To manufacture the CCL, the prepreg and copper foil were laminated using a hot press machine, and the thickness was measured using a microscope and micrometer. An 8-layerd PCB was designed with different circuit densities to measure the change in the thickness with the copper foil residual ratio, and the proposed empirical formulation was verified by comparing the measured thickness with the value obtained using the empirical formulation. As a result, the errors for the CCL and multilayer PCB were 2.56% and 4.48%, respectively, which demonstrated the reliability of the empirical formulation.