• Title/Summary/Keyword: Thickness optimization

Search Result 776, Processing Time 0.026 seconds

Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 설계민감도 해석과 위상 최적설계)

  • Ha Youn-Doh;Cho Seon-Ho;Jung Sang-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem (기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF

EFFECTIVE REINFORCEMENT OF S-SHAPED FRONT FRAME WITH A CLOSED-HAT SECTION MEMBER FOR FRONTAL IMPACT USING HOMOGENIZATION METHOD

  • CHO Y.-B.;SUH M.-W.;SIN H.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.643-655
    • /
    • 2005
  • The frontal crash optimization of S-shaped closed-hat section member using the homogenization method, design of experiment (DOE) and response surface method (RSM) was studied. The optimization to effectively absorb more crash energy was studied to introduce the reinforcement design. The main focus of design was to decide the optimum size and thickness of reinforcement. In this study, the location of reinforcement was decided by homogenization method. Also, the effective size and thickness of reinforcements was studied by design of experiments and response surface method. The effects of various impact velocity for reinforcement design were researched. The high impact velocity reinforcement design showed to absorb the more crash energy than low velocities design. The effect of size and thickness of reinforcement was studied and the sensitivity of size and thickness was different according to base thickness of model. The optimum size and thickness of the reinforcement has shown a direct proportion to the thickness of base model. Also, the thicker the base model was, the effect of optimization using reinforcement was the bigger. The trend curve for effective size and thickness of reinforcement using response surface method was obtained. The predicted size and thickness of reinforcement by RSM were compared with results of DOE. The results of a specific dynamic mean crushing loads for the predicted design by RSM were shown the small difference with the predicted results by RSM and DOE. These trend curves can be used as a basic guideline to find the optimum reinforcement design for S-shaped member.

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

Optimization of Superplastic Forming Process (초소성 성형공정 최적화)

  • Lee, Jeong-Min;Hong, Seong-Seok;Kim, Yong-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.207-214
    • /
    • 1998
  • Influence of final thickness distribution in superplastic forming processes on mechanical properties of the product becomes very crucial. We should improve the thickness distribution of products by combining process parameters adequately In this paper we adopt a non-linear optimization technique for optimal process design of superplastic forming. And optimum design variable which makes the most adequate thickness distribution in combined stretc/blow forming and blow forming is predicted by this optimization scheme and rigid-viscoplastic finite element method.

  • PDF

Strength Comparision of a Double-Deck Train Carbody by Optimization of the Underframe Thicknesses (언더프레임 두께 최적화에 따른 2층열차의 구조강도비교)

  • Hwnag Won-Ju;Kim Hyeung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.748-753
    • /
    • 2004
  • Aluminum alloy is very useful material for high speed transportations due to its high strength and light weight characteristics. Especially because of a weight reduction a large extrustion of aluminum alloy carbody has been manufactured. This aluminum extruded panel is a hallow extruded panel. This shape and thickness is various by designer's sense and experience and VAW's profiles. So it is important to find an optimized shape and thickness of AEP. In this study we get the AEP's thickness to minimize a weight by applying an applying an optimization algorithm. The results of the study can be used as basic guidelines double-deck trains in the future.

  • PDF

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics (회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화)

  • Yun, Yeong-Hun;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.