• Title/Summary/Keyword: Thickness of fabric

Search Result 284, Processing Time 0.022 seconds

Modeling and Simulation of the Linear Density Variation by Repetitive MD-Impacts in a Winding/Unwinding Control Process (Winding/Unwinding 제어공정에서 반복 충격에 기인한 MD-밀도 변동의 모델링과 시뮬레이션)

  • Huh You;Kim Hyung-J.;Kim Jong-S.;Chun Doo-H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.321-322
    • /
    • 2006
  • In many manufacturing processes such as web formation, manufacturing of paper and nonwoven, fabric weaving, etc., planar sheets are transported and at the same time appropriate tension is imposed. The input material rolled up on beams is fed by unwinding the beam and the processed is then taken up on beams by winding it. While processed, the planar sheets are thrown under the processing load of impulse form, which causes irregular thickness of the processed sheet. To improve the quality of the product, a dynamic model is needed and the dynamic characteristics is to be analyzed by simulation. This study shows that density variation dynamics of the in-process-sheet in the machine direction can be described at each moment of disturbing impacts in forms of difference equations, while the impacts and tension, the time-dependency of the material properties were taken into account. Simulation showed the most serious variation of the density occurred in the process starting phase. The starting velocity curve with step form showed the least variation of the density. As the time order of the function of the starting velocity cure becomes higher, the density variation gets greater.

  • PDF

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

A Study on the Improvement of Cold Protective Clothing for Mailman (우편배달원 방안복 개선을 위한 연구)

  • Kwon, Myoung-Sook;Seok, Hye-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.8
    • /
    • pp.14-23
    • /
    • 2007
  • The purpose of this study was to investigate the present condition of cold protective clothing for mailman, to improve its design in movement, fitness, and other functions, and supply basic data for its performance evaluation. The results are as follows : The 46.60% of those questioned did not satisfy current clod protective clothing fer mailman. Especially, they considered dissatisfactory in properties such as waterproof, comfort, activity, and sweat absorption. The newly developed cold protective clothing is two-piece style composed of jacket and pants. Both jacket and pants are composed of inner and outer clothing individually. In both jacket and pants, their outer clothing's material was waterproof, windproof, and breathable shell fabric on which PTFE film laminated and their inner clothing's material was 100% polyester Polar polis to have better insulation property. The jacket has attachable cap which can be used as rain gear and set-in sleeve with stand collar. It also had big outside patch pockets and side seam pockets to ensure enough storage space. The pants have knee pads to give free movement to knees and slant side pockets. Inner clothing of both jacket and pants can be worn during working inside without out clothing. Insulation of the newly developed cold protective clothing was not better than current one except right hand, left hand and left foo. It is considered that is because thickness of material is the most important factor to influence insulation.

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF

Fabrication and Inertia Dynamic Friction Properties of Pitch-based Carbon-Carbon Composites

  • Lee, Jinyong;Suhr, Dong-Soo;Lim, Yun-Soo;Lee, Seung-Goo;Park, Jong-Kyoo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.193-198
    • /
    • 1998
  • This paper presents the effects of an initial braking velocity, a braking pressure, and the number of braking stop on the tribological behaviors for the three different C-C composites using an inertia dynamic-friction tester. The C-C composites were prepared through the processes of several cycles of pitch impregnation/carbonization with different friction surface texture such as continuous 8-harness satin fabric (ADD-1), chopped fiber (ADD-2) and chopped fiber (ADD-3) having higher fiber volume fraction on friction than ADD-2 by about 10%. ADD-1 exhibited a higher fraction coefficient (0.41~0.33) than those of ADD-2 and ADD-3 (0.32~0.26) under the various initial braking velocities and braking pressures. The fraction coefficients decreased with increasing the initial velocity and the braking pressures. Wear rate by the thickness change after every 25 stop indicated that ADD-2 and ADD-3 having 1.7~2.7 $\mu\textrm{m}$/stop/pair were much lower than that of ADD-1 showing 5.0~6.5 $\mu\textrm{m}$/stop/pair. All specimens showed a little bit lower wear rate during the middle stage than the initial and latter stages among 100 braking stops. ADD-1 showed higher friction coefficient and wear rate due to the active pull-out of the fibers, evidenced by thicker were film and wear debrises.

  • PDF

A Study on the Properties of Knit Jacquard Structure (니트 자카드 조직의 특성에 관한 연구)

  • Ki, Hee-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.4
    • /
    • pp.77-90
    • /
    • 2015
  • This study is to designed to provide foundation for knit design which can apply the thickness and flexibility of jacquard knit by analyzing and comparing mechanical properties of 7 types of jacquard (normal jacquard, bird's eye jacquard, floating jacquard, tubular jacquard, ladder's back jacquard, blister jacquard, transfer jacquard) widely used in knit design to achieve the results. The sample was projected by using 7 gauge and SES-122S type computer knitting machine house tooth pattern with two colors were applied to 7 types of jacquard using Acrylic/Wool(30%/70%) $2/50.5^{\prime}s{\times}4ply\;yarn$ by Shimaseiki MFG., Ltd computer knitting machine. The mechanical properties of 7 types of jacquard samples were measured using KES-FB (Kawabata Evaluation System for Fabric, Kata Tech Co. Ltd). HV(Hand Value) and THV (Total Hand Value) were calculated by using the formula of KN-402-KT and KN-301-WINTER respectively. The measurements were evaluated by 0-to-5 rating scale. As result, the floating jacquard was found to have excellent drape, making it suitable for express feminine silhouette with its most flexible and smooth touch. On the other hand, bird's eye jacquard is adequate for a suit jacket and coat regarding its excellent volume and flexibility. Blister jacquard and tubular jacquard are thick, heavy and stiff knit and both are suitable for simple box-style design. Ladder's back jacquard, however, is more appropriate for expressing the design of feminine charm and voluminous design. Based on the result of this study, it is supposed to provide basic information for development of knit industry regarding jacquard knit by designing the creative knit wear with high production efficiency.

  • PDF

Satisfaction and Luxuriousness for Car Seat Covers (자동차 시트커버의 만족도와 고급감)

  • Roh, Eui Kyung;Kim, Eunae;Park, Gui Ra;Kim, Eune
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.446-457
    • /
    • 2017
  • This study surveys the usage and satisfaction of car seat covers, analyzes the satisfaction and luxuriousness of materials used and provides basic data on optimum car seat covers that improve consumer satisfaction, stability, and comfort, while driving. The survey was conducted on 150 people in their 20s to 60s with a car. Consequently, achromatic colored car seat covers were used most and the satisfaction with black was very high. Interior & exterior harmony and the pursued car image were considered important, this consumer psychology impacted the color selection for car seat covers. The satisfaction reasons were different according to materials. Genuine leather was highly regarded in interior & exterior harmony (20.8%), excellent seat sensation (17.7%), excellent tactile sensation (11.5%), and luxuriousness (8.5%). For artificial leather, interior & exterior harmony (16.5%) and easiness of stain removal (13.6%) was rated high and fabric had excellent seat sensation (12.3%) and economics (10.8%). The material, heated and ventilated device affected car seat cover satisfaction. The luxurious image of car seat covers was pursed and was perceived mainly with a sense of sight. Luxury car seat covers were mainly created with materials. Genuine leather and black car seat covers increased luxuriousness. For car seat covers, those with flexibility, excellent compressive elasticity, and thickness were perceived as luxurious.

Optimization of Fiber Ratio in Laminated Composites for Development of Three-dimensional Preform T-beam Structure (3차원 프리폼 T-빔 구조물의 개발을 위한 적층복합재료 섬유비율의 최적화)

  • Lee, Dong-Woo;Kim, Chang-Uk;Byun, Joon-Hyung;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Finite element analysis of T-beam laminate structure under bending-torsional loading was conducted to prevent the delamination which is the major failure behavior on laminated composites. Three-dimensional preform, which is that fabric is braided through thickness direction, is suggested from the laminate analysis. The analysis aimed to optimize the fiber ratio in laminated composites. After it is suggested that guideline for design of T-beam structure using commercial software ANSYS Composites PrePost. The results show that strength of T-beam structure is increased 21.6% when the fiber density along with beam length direction is two times bigger than transverse direction. It is expected that development of high strength T-beam structure using designed three-dimensional preform.

Mechanical Characteristic Test of Architectural ETFE Film Membrane (건축용 ETFE 필름 막의 역학적 특성 시험)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Bae, Boo-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • ETFE is the abbreviation of Ethlene Tetra Fluoro Ethlene, a sort of colorless and transparent granules. The advantage of ETFE film has chemical resistance, anti-stick property, very lightly material. The thickness of ETFE film is used to from 50 ${\mu}m$ to 300 ${\mu}m$ and have superior ability of daylight transmission and elongation, while the strength is lower than of fabric membrane. The tensile strength of ETFE film changes from 40Mpa to 60Mpa and the tensile strain at break can get to about 300-400%. The mechanical characteristic test of ETFE film is described in this paper. The tensile strain at break, the tensile strength and the stress-strain curve are obtained from the test. And then it was analyzed stress-strain characteristic by temperature and mechanical characteristic by cycling load.

  • PDF

A Study on the Mechanical Properties of Fabrics for Korean Folk Clothes (Part 2) On the Women's Fall & Winter Fabrics (한복지의 역학적 특성에 관한 연구 (제2보) 여자용 추동한복지)

  • Sung Su-Kwang;Kouh Jae-Oon;Kwon Oh-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.2 s.27
    • /
    • pp.169-179
    • /
    • 1988
  • In the part 1, relations were found between fundmental mechanical properties and primary hand values, performance of Korean women's summer fabrics. In this paper, in order to investigate the hand values and mechanical properties such as tensile, shearing, bending, compression, surface and thickness & weight of the women's fall & winter fabrics were measured by KES-F system. Sorts of 90 commercial fabrics for women's fall & winter clothes were classfied into 39 silk and 51 polyester fabrics according to meterials. The experimental results were analysed statistically to relate the hand values and the mechanical properties and concerning to formation of weared clothes and transformation behavior were investigated. Furthermore, there mechanical properties as well as their hand values were discussed in comparison with those values for kimono fabrics. The main results are summarized as follows; 1. The shape of silk fabrics in formation for weared clothes show a box-shaped silhouette. Polyester fabrics has a easy to shape-less and make a silhouette which goes along with the body. 2. Silk fabrics for Korean women's fall & winter clothes have ${\pm}1\sigma$ range of bending, shearing, surface properties and thickness as compared with kimono fabrics. 3. A wrinkle recovery and drapability of silk fabrics for Korean women's fall & winter clothes are inferior to kimono fabrics. On the other hand, the fabrics for Korean women's fall & winter clothes have conical-shaped silhouette based on higher bending rigidity. 4. Except for flexibility with soft feeling, a primary factor of mechanical properties contributes to the hand values of fabrics for Korean women's fall & winter clothes having no concern with materials were same as the women's summer fabrics. 5. As for the hand values of fabrics for Korean folk clothes, stiffness, anti-drape stiffness are larger than those of kimono fabric and stiffness, anti-drape stiffness, crispness of fabrics for Korean women's fall & winter clothes have smaller values as compared with Korean women's summer fabrics.

  • PDF