Purpose: The purpose of this study was to measure the buccal bone thickness and angulation of the maxillary incisors and to analyze the correlation between these parameters and the root position in the alveolar bone using cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 398 maxillary central and lateral incisors from 199 patients were retrospectively reviewed. The root position in the alveolar bone was classified as buccal, middle, or palatal, and the buccal type was further classified into subtypes I, II, and III. In addition, the buccolingual inclination of the tooth and buccal bone thickness were evaluated. Results: A majority of the maxillary incisors were positioned more buccally within the alveolar bone, and only 2 lateral incisors(0.5%) were positioned more palatally. The angulation of buccal subtype III was the greatest and that of the middle type was the lowest. Most of the maxillary incisors exhibited a thin facial bone wall, and the lateral incisors had a significantly thinner buccal bone than the central incisors. The buccal bone of buccal subtypes II and III was significantly thinner than that of buccal subtype I. Conclusion: A majority of the maxillary incisor roots were positioned close to the buccal cortical plate and had a thin buccal bone wall. Significant relationships were observed between the root position in the alveolar bone, the angulation of the tooth in the alveolar bone, and buccal bone thickness. CBCT analyses of the buccal bone and sagittal root position are recommended for the selection of the appropriate treatment approach.
Kim, Yun-Jeong;Park, Ji-Man;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
Journal of Periodontal and Implant Science
/
v.46
no.6
/
pp.372-381
/
2016
Purpose: The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods: In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0-5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results: Of the central incisors, 77% of all sites had a buccal thickness of 0.5-1.0 mm, and 23% had a thickness of 1.0-1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions: The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was generally not significant.
Akyalcin, Sercan;Schaefer, Jeffrey S.;English, Jeryl D.;Stephens, Claude R.;Winkelmann, Sam
Imaging Science in Dentistry
/
v.43
no.2
/
pp.85-90
/
2013
Purpose: This study was performed to determine the buccal alveolar bone thickness following rapid maxillary expansion (RME) using cone-beam computed tomography (CBCT). Materials and Methods: Twenty-four individuals (15 females, 9 males; 13.9 years) that underwent RME therapy were included. Each patient had CBCT images available before (T1), after (T2), and 2 to 3 years after (T3) maxillary expansion therapy. Coronal multiplanar reconstruction images were used to measure the linear transverse dimensions, inclinations of teeth, and thickness of the buccal alveolar bone. One-way ANOVA analysis was used to compare the changes between the three times of imaging. Pairwise comparisons were made with the Bonferroni method. The level of significance was established at p<0.05. Results: The mean changes between the points in time yielded significant differences for both molar and premolar transverse measurements between T1 and T2 (p<0.05) and between T1 and T3 (p<0.05). When evaluating the effect of maxillary expansion on the amount of buccal alveolar bone, a decrease between T1 and T2 and an increase between T2 and T3 were found in the buccal bone thickness of both the maxillary first premolars and maxillary first molars. However, these changes were not significant. Similar changes were observed for the angular measurements. Conclusion: RME resulted in non-significant reduction of buccal bone between T1 and T2. These changes were reversible in the long-term with no evident deleterious effects on the alveolar buccal bone.
Objective: To evaluate the changes in cortical bone thickness, alveolar bone height, and the incidence of dehiscence and fenestration in the surrounding alveolar bone of posterior teeth after rapid maxillary expansion (RME) treatment using cone-beam computed tomography (CBCT). Methods: The CBCT records of 20 subjects (9 boys, mean age: $13.97{\pm}1.17$ years; 11 girls, mean age: $13.53{\pm}2.12$ year) that underwent RME were selected from the archives. CBCT scans had been taken before (T1) and after (T2) the RME. Moreover, 10 of the subjects had 6-month retention (T3) records. We used the CBCT data to evaluate the buccal and palatal aspects of the canines, first and second premolars, and the first molars at 3 vertical levels. The cortical bone thickness and alveolar bone height at T1 and T2 were evaluated with the paired-samples t-test or the Wilcoxon signed-rank test. Repeated measure ANOVA or the Friedman test was used to evaluate the statistical significance at T1, T2, and T3. Statistical significance was set at p < 0.05. Results: The buccal cortical bone thickness decreased gradually from baseline to the end of the retention period. After expansion, the buccal alveolar bone height was reduced significantly; however, this change was not statistically significant after the 6-month retention period. During the course of the treatment, the incidence of dehiscence and fenestration increased and decreased, respectively. Conclusions: RME may have detrimental effects on the supporting alveolar bone, since the thickness and height of the buccal alveolar bone decreased during the retention period.
Purpose: The primary objective of this study was to analyze the thickness and height of alveolar bone around the maxillary and mandibular incisors. Additionally, this study aimed to compare bone parameters between Caucasian (CC) and African American (AA) female patients. Materials and Methods: In this retrospective pilot study, 50 female subjects(25 CC and 25 AA) were included. The inclusion criteria were AA or CC women between the ages of 18 and 50 with a normo-divergent facial pattern and Angle's class I, end-on class II, or mild class III malocclusion. The distance from the cementoenamel junction (CEJ) to the buccal and lingual alveolar crest; the alveolar ridge thickness at the mid-root and apex; and the buccal and lingual bone thickness at 3, 6, and 9mm from the CEJ were measured. Results: No significant difference was found (P>0.05) in the cortical bone thickness at 3mm, 6mm, or 9mm from the alveolar crest between CC and AA populations for most measurements. A significant difference in bone thickness was found (P<0.05) for the lingual surface of the central incisor, with maxillary bone thickness found to be higher than mandibular bone thickness. The measurements of lingual thickness were larger than those of buccal thickness for both races. Conclusion: There were no differences in maxillomandibular anterior alveolar bone measurements between normo-divergent adult AA and CC women, except for a few parameters at varying locations. However, future studies can be planned based the current pilot study data, which may provide valuable information.
Purpose: This study investigated whether the relationship between the maxillary sinus and the root of the maxillary premolar is correlated with the root position and whether there is a difference in the long axis angle of premolars and the buccal bone thickness according to the sinus-root relationship and root position. Materials and Methods: Cone-beam computed tomographic images of 587 maxillary first premolars and 580 second premolars from 303 patients were retrospectively reviewed. The maxillary sinus floor-root relationship was classified into 4 types, and the root position in the alveolar bone was evaluated as buccal, middle, or palatal. The long axis angle of the maxillary premolars in the alveolar bone and the buccal bone thickness were measured. The correlation between these parameters was analyzed. Results: The maxillary sinus floor-root relationship showed a statistically significant correlation with the root position in the alveolar bone. Most maxillary first premolars were buccally located, and more than half of the second premolars had their roots in the middle. The long axis angle of the premolars was significantly larger in buccal-positioned teeth than in middle-positioned teeth, and the buccal bone was thinner. Conclusion: When the root of the maxillary premolar was separated from the sinus floor, the premolar was often located on the buccal side. Most of the maxillary first premolars had a thinner buccal bone and larger inclination than the second premolars. It is recommended to evaluate the root position, sagittal angle and buccal bone thickness using CBCT for implant treatment planning.
Purpose: The aim of this study is to evaluate the buccal and lingual bone thickness in the anterior teeth and the relationship between bone thickness and the tissue biotype. Methods: Three male and two female human cadaver heads (mean age, 55.4 years) were used in this study. First, the biotype of periodontium was evaluated and categorized into a thick or a thin group. Next, full thickness reflections of the mandible and the maxilla to expose the underlying bone for accurate measurements in the anterior regions were performed. After the removal of the half of the alveolar bone, the probe with a stopper was used to measure the thickness of bone plate at the alveolar crest (AC), 3 mm apical to the alveolar crest (AC-3), 6 mm apical to the alveolar crest (AC-6), and 9 mm apical to the alveolar crest (AC-9). The thickness of the buccal plates at the alveolar crest were $0.97{\pm}0.18\;mm$,$0.78{\pm}0.21\;mm$, and $0.95{\pm}0.35\;mm$ in the maxillary central incisors, lateral incisors, and canines, respectively. The thickness of the labial plates at the alveolar crest were $0.86{\pm}0.59\;mm$, $0.88{\pm}0.70\;mm$, and $1.17{\pm}0.70\;mm$ in the mandibular central incisors, lateral incisors and canines, respectively. Conclusions: The thickness of the labial plate in the maxillary anteriors is very thin that great caution is needed for placing an implant. The present study showed the bone thickness of maxillary and mandibular anteriors at different positions. Therefore, these data can be useful for the understanding of the bone thickness of the anteriors and a successful implant placement.
Purpose : Cortical bone thickness is one of the important factor in mini-implant stability. This study was performed to investigate the buccal cortical bone thickness at every interdental area as an aid in planning mini-implant placement. Materials and Methods : Two-dimensional slices at every interdental area were selected from the cone-beam computed tomography scans of 20 patients in third decade. Buccal cortical bone thickness was measured at 2, 4, and 6 mm levels from the alveolar crest in the interdental bones of posterior regions of both jaws using the plot profile function of $Ez3D2009^{TM}$ (Vatech, Yongin, Korea). The results were analyzed using by Mann-Whitney test. Results : Buccal cortical bone was thicker in the mandible than in the maxilla. The thickness increased with further distance from the alveolar crest in the maxilla and with coming from the posterior to anterior region in the mandible (p<0.01). The maximum CT value showed an increasing tendency with further distance from the alveolar crest and with coming from posterior to anterior region in both jaws. Conclusion : Interdental buccal cortical bone thickness varied in both jaws, however our study showed a distinct tendency. We expect that these results could be helpful for the selection and preparation of mini-implant sites.
Objective: This study was performed to investigate the alveolar bone of lower incisors in skeletal Class III adults of different vertical facial patterns and to compare it with that of Class I adults using cone-beam computed tomography (CBCT) images. Methods: CBCT images of 90 skeletal Class III and 29 Class I patients were evaluated. Class III subjects were divided by mandibular plane angle: high (SN-MP > $38.0^{\circ}$), normal ($30.0^{\circ}$ < SN-MP < $37.0^{\circ}$), and low (SN-MP < $28.0^{\circ}$) groups. Buccolingual alveolar bone thickness was measured using CBCT images of mandibular incisors at alveolar crest and 3, 6, and 9 mm apical levels. Linear mixed model, Bonferroni post-hoc test, and Pearson correlation analysis were used for statistical significance. Results: Buccolingual alveolar bone in Class III high, normal and low angle subjects was not significantly different at alveolar crest and 3 mm apical level while lingual bone was thicker at 6 and 9 mm apical levels than on buccal side. Class III high angle group had thinner alveolar bone at all levels except at buccal alveolar crest and 9 mm apical level on lingual side compared to the Class I group. Class III high angle group showed thinner alveolar bone than the Class III normal or low angle groups in most regions. Mandibular plane angle showed negative correlations with mandibular anterior alveolar bone thickness. Conclusions: Skeletal Class III subjects with high mandibular plane angles showed thinner mandibular alveolar bone in most areas compared to normal or low angle subjects. Mandibular plane angle was negatively correlated with buccolingual alveolar bone thickness.
Purpose: This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Materials and Methods: Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Results: Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. Conclusion: In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.