• Title/Summary/Keyword: Thickness control

Search Result 2,810, Processing Time 0.028 seconds

Technology of Dimensional Control for Different Thickness Strip in Hot Strip Finishing Mills (열간 마무리압연에서 이종두께 강판의 치수제어기술)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • In this paper, we suggest a dimensional controller to produce a different thickness strip without adding production facilities at the same steel. We describe the model for the non-linear thickness and speed setup, and drive a variation of the speed and thickness with Talyor expansion. The control algorithm is composed of 8 steps and the transient condition is added in order to maintain a mass flow between stands. A simulator is developed in order to verify the algorithm, and includes a non-linear rolling model, the tension model, AGC model, the disturbance model, and so on. From the simulation results by disturbances, we show that the thickness, tension and looper angle are converged to the set condition when we change the rolling conditions.

Thickness Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간 압연시스템의 두께제어)

  • 김승수;김종식;황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.248-254
    • /
    • 1996
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate significantly the effect of roll eccentricity in multivariable cold-rolling processes. Fundamental problems such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap mearsurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. And, LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that eccentricity components have been significantly eliminated and simultaneously other distrubances also have been attenuated.

  • PDF

Design of a robust gauge controller for a single-stand cold rolling mill (단일 스탠드 냉간 압연 공정을 위한 견실한 두께 제어기의 설계)

  • An, Hyeon-Sik;Yun, Tae-Ung;Kim, Gwang-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.134-141
    • /
    • 1996
  • In this paper, we formulate the mathematical model for a single-stand rolling mill and design control systems for the thickness control at the exit of roll stand and for the tension control of the strip in the process. We propose a thickness controller based on the Internal Model Control structure which can be an effective application when the frequency components of the thickness deviation of the entry strip are known and, show how it can be appropriately combined with BISRA AGC method for a precise thickness control while maintaining the robustness against the modeling error of the mill modulus. It is illustrated by simulations that the proposed thickness control method gives better performance than existing methods and has the robustness against the modeling error of the mill modulus as well.

  • PDF

Eddy Current System For Coating Thickness Measurement

  • Rerkratn, Apinai;Pulkham, Jirayut;Chitsakul, Kitiphol;Sangworasil, Manas;Keawpoonsuk, Anucha;Songsataya, Kiettiwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1907-1910
    • /
    • 2005
  • Coating thickness is an important variable that plays a role in product quality, process control, and cost control. Measurement of film thickness can be done with many different instruments. In this paper, we introduce the new eddy current system for measure the thickness of nonconductive coatings on nonferrous metal substrates. The experimental results are shown that the proposed system is able to measure thickness of plastic film coating on aluminum plates in the range of 0 to 1000 microns with satisfy sensitivities, linearity, resolution and stability of the system.

  • PDF

The Effects of Breathing Retraining on Asymmetry of Diaphragm Thickness in Stroke Patients (호흡훈련이 뇌졸중 환자의 횡격막 비대칭에 미치는 영향)

  • Kim, Nan-Soo;Jung, Ju-Hyeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 2013
  • PURPOSE: The purpose of this study was to examine the effects of breathing retraining on asymmetry of diaphragm thickness in stroke patients. METHODS: This study was nonequivalent control group pre-post test design. Subjects were assigned to two different groups(intervention group=10, control group=12). Intervention group conducted breathing retraining program for six-week. Diaphragm thickness was assessed by ultrasound in B-mode with a 7.5 MHz linea probe. The collected data analyzed by Wilcoxon signed rank test and Mann-Whitney U test. RESULTS: The intervention group significantly increased diaphragm thickness ratio on paretic side but the control group showed no significant difference in diaphragm thickness ratio. The control group significantly increased asymmetry of diaphragm thickness, but intervention group showed no significant difference in asymmetry of diaphragm thickness. CONCLUSION: This study showed that breathing retraining increased diaphragm thickness ratio in stroke patients and prevent the increase of asymmetry in diaphragm thickness with stroke patients.

Thickness Control of Tandem Cold Mills Using $H{\infty}$Control Techniques ($H{\infty}$제어기법에 의한 연속 냉간 압연시스템의 두께 제어)

  • 김종식;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.145-155
    • /
    • 1998
  • An $H{\infty}$ controller with a roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occured in rolling stands themselves of tandem cold mills. A robust controller to the disturbances is designed by H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and the knowledge of disturbance spectrum in the frequency domain. First, fundamental problems in tandem cold mills such as process transport delay inherent in the exit thickness measurement and the feedforward loading of roll eccentricity signals on the exit thickness be overcome by the roll eccentricity filtering and the compensation for the error of gaugemeter thickness estimator. And non-satndard $H{\infty}$ control problem caused by the selection of weighting function having poles on the $J{\omega}$-axis is discussed. The resultant controller composed by an $H{\infty}$ controller and an estimator for the roll eccentricity is evaluated through computer simulations. The effectiveness of the proposed control method is compared to that of the conventional LQ controller method and a feedforward controller for the roll eccentricity, which has been already studied.

  • PDF

Adaptive sliding mode control with self-tuning the boundary layer thickness (자기동조 경계층 범위를 갖는 적응 슬라이딩모드 제어)

  • Park, Jae-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.8-14
    • /
    • 2000
  • In this paper, three adaptive sliding mode control algorithms, which self-tune both the sliding mode gain and the boundary layer thickness, are proposed. The first algorithm uses a gain adaptation rule is combined with the boundary layer thickness adaptatioin rule to satisfy the sliding condition. In the third algorithm, the computation burden of the second algorithm is reduced further, and therefore no extra cost is required for real-time implementation. Due to the mixed sliding mode gain and the boundary layer thickness adaptation scheme, the tracking error and the chattering of the control input can be reduced greatly.

  • PDF

The Effect of Real-time Ultrasound Imaging Feedback during Abdominal Hollowing in Four Point Kneeling to Healthy Men

  • Park, Du-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Purpose: This study investigated the effects of visual feedback during abdominal hollowing (AH) in four point kneeling position, using real-time ultrasound imaging through measurement of the changes in the thickness of transversus abdominis (TrA), internal abdominal oblique (IO), and external abdominal oblique (EO). Methods: The subjects of this study were 32 healthy males who were divided intothe experimental group of 16 subjects and the control group of 16 subjects. The real-time ultrasound feedback was applied to the experimental group while they were educated on the AH exercise in four point kneeling whereas only general education and training were given to the control group. After the training, the changes in the thickness of abdominal muscles during AH in four point kneeling were compared between the experimental group and the control group. Results: The differences of the changes in the thickness of TrA and EO between the two groups were statistically significant. Conclusion: The experimental group experienced a higher increase in the thickness of TrA than the control group while the thickness of IO and EO of the experimental.

A Study on Development of Setup Model for Thickness Control in Tandem Cold Rolling Mill (연속냉간압연의 두께제어 모델 개발에 관한 연구)

  • 손준식;김일수;권욱현;최승갑;박철재;이덕만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.96-103
    • /
    • 2001
  • The quality requirements for thickness accuracy in cold rolling continue to become more stringent, particularly in response to exacting design specification from automotive customers. One of the major impacts from the tighter tolerance level is more unusable product on the head end and tail end of tandem mill coils when the mill is in transition to or from steady state rolling condition. A strip thickness control system for a tandem cold steel rolling mills is composed with blocked non-interacting controller and controllers for strip thickness and tension control of each rolling stands. An intelligent mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even if the effect of elastic compression was not important.

  • PDF

An Implementation of Fuzzy Automatic Gauge Control for the Plate Steel Rolling Process (후판 압연공정에서 퍼지 두께제어 구현)

  • Hur, Yone-Gi;Choi, Young-Kiu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.634-640
    • /
    • 2009
  • The plate manufacturing processes are composed of the reheating furnace, finishing mill, cooling process and hot leveling. The finishing rolling mill (FM) as a reversing mill has produced the plate steel through multiple pass rolling. The automatic gauge control (AGC) is employed to maintain the thickness tolerance. The high grade products are forming greater parts of the manufacturing and customers are requiring strict thickness margin. For this reason, the advanced AGC method is required instead of the conventional AGC based on the PI control. To overcome the slow response performance of the conventional AGC and the thickness measurement delay, a fuzzy AGC based on the thickness deviation and its trend is proposed in this paper. An embedded controller with the fuzzy AGC has been developed and implemented at the plate mill in POSCO. The fuzzy AGC has dynamically controlled the roll gap in real time with the programmable logic controller (PLC). On line tests have been performed for the general and TMCP products. As the results, the thickness deviation range (maximum - minimum of the inner plate) is averagely from 0.3 to 0.1 mm over the full length. The fuzzy AGC has improved thickness deviation and completely satisfied customer needs.