• 제목/요약/키워드: Thickness Strain

검색결과 1,221건 처리시간 0.031초

비대칭 압연한 AA1100 판재에서 잔류전단변형에 미치는 롤과 재료간의 마찰의 영향 (Effect of friction between roll and sample on residual shear strains in AA1050 sheet during asymmetrical rolling)

  • 지영규;정효태;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.156-158
    • /
    • 2003
  • Sheets of aluminum alloy 1050 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The variation of the shear strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced residual shear strain gradients throughout the thickness layers.

  • PDF

후판압연에서의 재결정거동 예측 (Prediction of Recrystallization Behavior during Thick-Plate Rolling)

  • 이동근;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.320-326
    • /
    • 1999
  • In the present investigation, recrystallization occurring during hot rolling of thick steel plate was predicted. The thermo-mechanical history of a material point was traced by the finite element method and the recrystallization was predicted by the Sellars equations. The investigation was performed for 4 different cases; two different pass schedules in conventional rolling and two different pass schedules in controller rolling. Variations of temperature, strain, strain rate and grain size were compared with each other. It was found out that the difference of grain size through thickness was more distinctive in the cases of controller rolling.

  • PDF

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석 (Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element)

  • 이상기;박훈철;윤광준;조창민
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.25-34
    • /
    • 2003
  • 본 논문에서는 압전 작동기가 삽입되거나 부착된 구조를 해석하기 위하여, 기존의 기계적 문제만을 고려한 9 절점 가정변형률 쉘 요소의 정식화를 전기-기계연성 문제에도 적용 가능하도록 확장하였다. 본 쉘요소는 잠김현상을 완화할 수 있고, 두께변형을 고려하기 위해 각 절점에서 6개의 자유도를 갖는 특징이 있다. 전기-기계 자유도들은 구성방정식을 이용하여 연계시켰다. 변위장은 요소의 전체 두께방향으로 선형으로 가정하였고, 전기적 포텐셜은 각각의 압전재료층에 대해 선형으로 가정하였다. 확장된 정식화에 기초한 유한요소 프로그램을 개발하였고, 수치예제들을 통해 프로그램을 검증하였다. 개발된 쉘 요소에 의한 결과는 다른 참고문헌들의 결과들과 잘 일치하였다.

BS/Channeling을 이용한 Pt(111)/$Al_2O_3$(0001) 적층 생장 연구 (BS/channeling studies on the epitaxially grown Pt(111) films on $Al_2O_3$(0001))

  • 이종철;김신철;김효배;정광호;김긍호;최원국;송종환
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.300-305
    • /
    • 1998
  • rf magnetron sputtering 증착법으로 Al2O3(0001)기판위에 적층생장시킨 Pt박막의 결정성 및 이의 구조적 특성을 backscattering spectrometry(BS)/channeling, transmission electron microscopy(TEM)등을 이용해 분석하였다. $MeV^4$He ion channeling 결과, 증착시 기판의 온도가 $600^{\circ}C$, 증착된 Pt층의 두께가 3500$\AA$이었을 때 최소산란수율(channeling minimum yield)이 4%인 결정성이 우수한 Pt박막이 생장되었음을 확인하였으며, 동일한 증 착조건하에서 증착된 Pt층은 $Al_2O_3$(0001)기판위에 6중 대칭구조를 지닌(111)면방향으로 적층 생장되었으며, (111)면방향을 중심으로 대칭적인 원자배열 구조를 갖고 있는 쌍정구조를 형 성하고 있었다. 단면 TEM 분석결과에서도 격자부정합에 의한 strain을 감소시키기 위하여 형성된 쌍정을 관찰할 수 있었으며 strain이 집중되는 쌍정경계면에서 표면거칠기의 증가 또는 관찰되었다.

  • PDF

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

체적의 변화를 통한 방광벽 두께와 기계적 재료상수 변화가 배뇨근 활동에 미치는 영향 (Effect of Bladder Wall Thickness Through Change of Bladder Volume and Material Properties on Detrusor activity Study)

  • 전수민;이문규;최범규
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.584-590
    • /
    • 2012
  • The structural and functional disorder of a detrusor induces a bladder hypertrophy and degenerates a bladder muscle gradually by preventing normal urination. Thus, the thickness of the bladder wall has been increased in proportion to the degree of bladder outlet obstruction. In this study, the mechanical characteristics of the detrusor is analyzed for the physical properties and the thickness changes of the bladder muscle using a mathematically analytic method. In order to obtain the mechanical property of the bladder muscle, the tensile test of porcine bladder tissue is performed because its property is similar to that of human. The result of tensile test is applied to the mathematically model as Mooney Rivlin coefficients which represent the hyperelastic material. The model of the bladder is defined as the spherical shape with the initial volume of 50ml. The principal stress and strain according to the thickness are analyzed. Also, computer simulations for three types of the material property for the model of the bladder are performed based on the fact that the stiffness of the bladder is weakened as the progress of the benign prostatic hyperplasia. As a result, the principal stress is 341kPa at the initial thickness of 2.2mm, and is 249kPa at 6.5mm. As the bladder wall thickness increases, the principal stress decreases. The principal stress and strain decrease as the stiffness of the bladder decreases under the same thinkness.

PLD법에 의해 제조된 ZnO박막의 두께 변화에 따른 특성 연구 (Thickness dependence of ZnO thin films grown on sapphire by PLD)

  • 윤욱희;명재민;이동희;배상혁;윤일구;이상렬
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.319-323
    • /
    • 2001
  • 펄스레이저 증착법 (PLD)으로 (0001)면 사파이어 기판 위에 성장시킨 ZnO 박막의 두게 변화가 표면형상, 결정성 및 전기/광학적 특성에 미치는 효과에 대하여 조사하였다. SEM 및 XRD 분석을 통해 약 4000 의 두께에서 3차원 island들이 생성되며, 박막의 두께가 증가함에 따라 결정립의 크기가 증가하고, 결정성이 향상되었음을 알 수 있었다 상온에서의 PL 측정을 통해 두께가 증가함에 따라 ultraviolet(UV) 및 deep level emission peak의 강도가 급격히 증가함을 알 수 있었다. Hall측정 결과, 모든 박막들이 H형 전도도를 보였고, 운반자농도가 $10^{19}$ $cm^{-3}$ 이상이었으며, 두께가 증가할수록 운반자농도가 감소하여 약 4000 에서 포화되는 경향을 보였다. 따라서, 사파이어 기판 위에 증착시킨 ZnO 박막은 약 4000 의 두께에서 bulk ZnO의 특성을 나타내었다.

  • PDF

UNS N06690 제1열 시제전열관의 U-굽힘성형에서 형상변화와 표면잔류응력 (Geometric variations and surface residual stresses in U-bending processes of an UNS N06690 row-1 heat exchanger tubes)

  • 김우곤;장진성;국일현;주진원;김성청
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.238-246
    • /
    • 1998
  • Surface residual stresses as well as wall thickness and ovality changes after U-bending process on UNS N06690 row-1 heat exchanger tubes, were estimated. Surface residual stresses were measured by Hole Drilling Method(HDM), calculating the stresses from relieved strains of 3 rosette strain gages. After bending of the tubes, dimensional tolerances for wall thickness and ovality were satisfied with ASTM requirements. Residual stresses at the extrados were introduced with compressive stress(-) by bending operations, and its maximum value reached-319 MPa in axial direction at ${\phi}=0^{\circ}$ in position. Tensile residual stresses(+) of ${\sigma}_zz=45$ MPa,${\sigma}_zz=25$ MPa were introduced in the intrados surface at position of ${\phi}=0^{\circ}$ Maximum tensile residual stress of 170 MPa was detected on the flank side at position of ,${\phi}=95^{\circ}$i.e., at apex region. It appeared that higher stress gradients were generated at the irregular transition regions. In the trend of residual stress changes with U-bend position, the extrados is related with the changes of ovality and the intrados is related with the changes of wall thickness.