• Title/Summary/Keyword: Thickness Distribution of Rolled Strip

Search Result 4, Processing Time 0.019 seconds

Study on the thickness precision of rolled sheets (압연판의 두께 정밀도에 관한 연구)

  • 김동원;윤상건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.837-845
    • /
    • 1987
  • In the research of the rolling of strip, producing the strip with a close tolerance of thickness over the rolling direction was a principal object. But it was solved by the contribution of two-dimensional theory of rolling and the development of automatic gauge control system. And new requirements for the study of flatness, crown of rolled strip and edge drop grow up recently. These phenomena are closely related with the thickness distribution along the lateral direction of rolled strip. To analyse the thickness distribution of rolled strip along the lateral direction, elastic deformation of rolls and plastic deformation of work material must be discussed simultaneously. In this report, an approximate three-dimensional analysis based on Tozawa's three dimensional approach was applied to 12 cases of different rolling conditions and the numerical results were investigated. Especially stresses were laid upon the investigation of optimal boundary position between the three-dimensional analysis region and the plane strain analysis region.

Analysis of Residual Stress and Etching Curl of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력과 변형 해석)

  • 정호승;조종래;문영훈;김교성
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The cold rolling conditions for the ultra thin steel for tension mask are very important because the residual stress that affects the flatness of strip is generate during the cold rolling. The residual stress in the sheet causes etching curls when it suffers perforation process. The residual stress through the thickness. To estimate the residual stress and deformation due to etching curl. FEM analysis is performed. Numerical simulation employ a ANSY5 5.6 and an elastic-plastic constitutive equation. The simulation results indicate the distribution of residual stress in the rolled sheet can be controlled by selecting the rolling conditions properly.

Stress Analysis of Cold Rolled Strip Coiling Process (냉연재 권취공정의 응력해석)

  • Park, Kyu Tae;Park, Yong Hui;Park, Hyun Chul;Won, Sung Yeun;Hong, Wan Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.409-414
    • /
    • 2017
  • In the thin strip coiling process, it is necessary to use a sleeve with a mandrel to prevent excessive deformation of the strip. The stress distribution in the sleeve and strip is an important factor to determine the size of the sleeve. However, an experimental approach is almost impossible because of the accumulation of high pressure. A finite element (FE) model of the strip coiling process was developed in this study. Then, the radial and hoop stresses on the sleeve and strip were investigated using FE analyses. The theoretical values and analysis results under idealized conditions were compared to verify the FE model. The effect of the strip thickness on the stress distribution was also investigated. The radial stress increased by 6.3 times for a 1-mm-thick strip at the coil starting point. The radial stress at the sleeve increased by 14.8 % with a stacked thickness of 90 mm because of the reaction force applied by the mandrel.

A Study on Characteristics of Automatic Flatness Control System of Contact Type (접촉식 자동 형상제어 장치의 특성에 관한 연구)

  • Kim, Moon-kyung;Jeon, Eon-chan;Kim, Soon-kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-73
    • /
    • 1996
  • The necessity for more accurate automatic flatness control(AFC) system has increased of customers' requirement for cold rolled steel sheet. Therefore, many cold rolling mills replaced its AFC system with a measuring roll of the contact type form the non-contact type. In this paper. The performance of AFC system of contact type has been investigated under industrial conditions. It has two kinds of actuator: roll bender, spot cooling system. The test results are as follows: The more strip thickness is thick, the smaller the I value, and the more it is thin, the bigger the I value. And a complex distribution of strip tension was controlled, for example, not only a pocket wave but also a simple center wave and edge wave. Because the tension deviation is larger at acceler- ation speed and decelerationspeed than steady speed, AFC system of contact type is better to adopt over 50m/mim. AFC system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and sticker, defects caused by poor flatness, have been decreased about 60%.

  • PDF