• Title/Summary/Keyword: Thick film$Al_2O_3$

Search Result 107, Processing Time 0.032 seconds

Structural and Dielectirc Properties of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ Thick Films ($B_{2}O_{3}-Li_{2}CO_{3}$의 첨가량에 따른 BST-MgO 후막의 구조 및 유전 특성)

  • Kang, Won-Seok;Koh, Jung-Hyuk;Nam, Song-Min;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1261-1262
    • /
    • 2007
  • At first the $Ba_{0.5}Sr_{0.5}TiO_{3}$-MgO powder with $B_{2}O_{3}-Li_{2}CO_{3}$ were made by the Sol-Gel method. And then the thick films of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ were fabricated on the $Al_{2}O_{3}$ substrates coated with Pt by the screen printing method. The structural and dielectric properties of the BST-MgO thick film with $B_{2}O_{3}-Li_{2}CO_{3}$ addition were investigated. The structure of the BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ thick films were dense and homogeneous with no pores. The dielectric constant and dielectric loss were increased with decreasing the $B_{2}O_{3}-Li_{2}CO_{3}$ addition ratio.

  • PDF

The Electrical Properties of Sputtered GDC Thim Film for Solid Oxide Fuel Cells (고체산화물 연료전지 박막의 전기적 특성 연구)

  • Lee, Ki-Seong;Lee, Jai-Moon;Shim, Su-Man;Kim, Dong-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • The electrical properties of sputtered GDC thin films on $Al_2O_3$ substrates was studied. The electrical properties of the films were measured to evaluate the ion conductivity of GDC thin films for co-planar SOFC electrolytes. The impedance of the GDC thin films on $Al_2O_3$ substrates was affected by the film thickness and the impedance of thin film exhibited higher value than thick films. Similarly, the conductivity of the thick film showed much higher value than thin films. It indicated that the film thickness is the main factor affecting the conductivity and impedance of the GDC electrolyte for the co-planar SOFC.

Dielectric Properties of Al2O3 Thick Films Grown by Aerosol Deposition Method (에어로졸 데포지션법으로 성막된 Al2O3 후막의 유전특성)

  • Park, Jae-Chang;Yoon, Young-Joon;Kim, Hyo-Tae;Koo, Eun-Hae;Nam, Song-Min;Kim, Jong-Hee;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.411-417
    • /
    • 2008
  • Aerosol Deposition Method (ADM) is a novel technique to grow ceramic thick films with high density and nano-crystal structure at room temperature. $^{1,2)}$ For these unique advantages of ADM, it would be applied to the fabrication process of 3-D integration ceramic modules effectively. However, it is critical to control the properties of starting powders, because a film formation through ADM is achieved by impaction and consolidation of starting powders on the substrates. We fabricated alumina thick films by ADM for the application to integral substrates for RF modules. When the as-received alumina powders were used as a starting material without any treatments, it was observed that the dielectric properties of as-deposited alumina films, such as relative permittivity and loss tangent, showed high dependency on the frequency. In this study, some techniques of powder pre-treatments to improve the dielectric properties of alumina thick films will be shown and the effects of starting powders on the properties of AD films will be discussed.

Development of piezocapacitive thick film strain gage based on ceramic diaphragm (세라믹 다이어프램을 이용한 정전용량형 후막 스트레인 게이지)

  • Lee, Seong-Jae;Park, Ha-Young;Kim, Jung-Ki;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1529-1531
    • /
    • 2003
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, piezocapastive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. The screen printing technique has been used to fabricate the pressure sensors on alumina substrate($Al_2O_3$). Thick film capacitive of strain sensing characteristics are reported and dielectric paste based on (Ti+Ba) materials. The electric property of dielectric paste has been studied and exhibit good properly with good gage factor comparable to piezoresistive strain gage. New piezocapacitive strain sensor was designed and tested. The output of capacitive value was good characteristics.

  • PDF

Growth and Electrical Characteristics of Ultrathin $SiO_2$ Film Formed in an Electron Cyclotron Resonance Oxygen Plasma (ECR 산소 플라즈마에 의한 $SiO_2$ 박막의 성장 거동 및 전기적 특성)

  • 안성덕;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.371-377
    • /
    • 1995
  • Silicon oxide films were grown on single-crystal silicon substrates at low temperatures (25~205$^{\circ}C$) in a low pressure electron cyclotron resonance (ECR) oxygen plasma. The growth rate of the silicon oxide film increased as the temperature increased or the pressure decreased. Also, the thickness of the silicon oxide film increased at negative bias voltage, but not changed at positive bias voltage. The growth law of the silicon oxide film was approximated to the parabolic form. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were studied using Al/SiO2/p-Si MOS structures. For a 10.2 nm thick silicon oxide film, the leakage current density at the electric field of 1 MVcm-1 was less than 1.0$\times$10-8Acm-2 and the breakdown field was higher than 10 MVcm-1. The flat band voltage of Al/SiO2/p-Si MOS capacitor was varied in the range of -2~-3 V and the effective dielectric constant was 3.85. These results indicate that high quality oxide films with properties that are similar to those of thermal oxide film can be fastly grown at low temperature using the ECR oxygen plasma.

  • PDF

Fabrication of Porous Al2O3 Film by Freeze Tape Casting (냉동 후막 성형에 의한 다공성 Al2O3 필름 제조)

  • Shin, Ran-Hee;Koo, Jun-Mo;Kim, Young-Do;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2015
  • Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate (유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2009
  • In this paper, ZnO:Al thin film was deposited on polyethylene terephthalate(PET) substrate by capacitively coupled r. f. magnetron sputtering method from a ZnO target mixed with 2wt[%] Al2O3 to investigate the possible application of ZnO:Al film as a transparent conducting electrode for film typed DSCs. The effect of substrate bias on the electrical properties and film structure were studied. The results showed that a positive bias applied to the substrate during sputtering contributed to an improvement of electrical properties of the film by attracting electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO:Al film on the substrate, resulting in significant variations in film structure and electrical properties. Electrical resistivity of the film decreases significantly as the positive bias increases up to +30[V] However, as the positive bias increases over +30[V], the resistivity decreases. The transmittance varies little as the substrate bias is increased from 0 to +60[V], and as r. f. powers increases from 160[W] to 240[W]. The film with electrical resistivity as low as $1.8{\times}10^{-3}[{\Omega}-cm]$ and optical transmittance of about 87.8[%] were obtained for 1,012[nm] thick film deposited with a substrate bias of +30[V].