• 제목/요약/키워드: Thick Films

검색결과 948건 처리시간 0.05초

Al-Ti계 산화물 박막의 조성에 따른 선택적 투과 특성 (Selective Transmission Properties of Al-Ti Based Oxide Thin Films)

  • 방기수;정소운;임정욱;이승윤
    • 한국진공학회지
    • /
    • 제22권1호
    • /
    • pp.13-19
    • /
    • 2013
  • 건물기능과 디자인을 개선하는 건물일체형 태양전지의 발전 가능성이 높게 평가되고 있다. 현재는 투명 염료감응형 태양전지가 유력한 건물일체형 태양전지 기술로서 개발되고 있는데 박막 공정 기술에 기초하는 Si계 투명 박막 태양전지가 새로운 대안으로서 조명받고 있다. Si계 투명 박막 태양전지에 선택적 투과막을 적용하면 가시광선은 태양전지를 투과하고 적외선은 광 흡수층으로 재반사되기 때문에 변환효율이 향상된다. 본 연구에서는 여러 종류의 박막 증착 기술 중에서 경제성이 높은 스퍼터링 방식을 이용하여 Al-Ti계 산화물 박막을 형성하고 조성에 따른 선택적 투과 특성 변화를 관찰하였다. Al-Ti계 산화물 박막의 투과율 및 반사율은 조성에 따라 크게 변화하였으며 25 nm 두께의 AlTiO 박막에서 선택적 투과 특성이 관찰되었다. 이러한 Al-Ti계 산화물 박막의 광학적 특성을 Si계 박막 태양전지에 응용하면 투명 태양전지 구현 및 변환효율 향상이 가능해 지리라 판단된다.

AZ91 마그네슘 합금의 플라즈마 전해산화 피막 형성 및 물성에 미치는 0.1 M NaOH + 0.05 M NaF 용액 중 Na2SiO3 농도의 영향 (Formation Behavior and Properties of PEO Films on AZ91 Mg Alloy in 0.1 M NaOH + 0.05 M NaF Solution Containing Various Na2SiO3 Concentrations)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제53권2호
    • /
    • pp.59-66
    • /
    • 2020
  • Effects of Na2SiO3 concentration added into 0.1 M NaOH + 0.05 M NaF solution on the formation behavior and properties of PEO films on AZ91 Mg alloy were investigated under 1200 Hz of alternating current (AC) by voltage-time curves, in-situ observation of arc generation behavior and measurements of film thickness, surface roughness and micro vickers hardness. In the absence of Na2SiO3 in the 0.1 M NaOH + 0.05 M NaF solution, about 4 ㎛ thick PEO film was formed within 1 min and then PEO film did not grow but white spots were formed by local burning. Addition of Na2SiO3 up to 0.2 M caused more increased formation voltage and growth of PEO film with uniform generation of arcs. Addition of Na2SiO3 from 0.2 M to 0.4 M showed nearly the same voltage-time behavior and uniform arc generation. Addition of Na2SiO3 more than 0.5 M resulted in a decrease of formation voltage and non-uniform arc generation due to local burning. PEO film growth rate increased with increasing added Na2SiO3 concentration but maximum PEO film thickness was limited by local burning if added Na2SiO3 concentration is higher than 0.5 M. Surface roughness of PEO film increased with increasing added Na2SiO3 concentration and appeared to be proportional to the PEO film thickness. PEO film hardness increased with increasing added Na2SiO3 concentration and reached a steady-state value of about 930 HV at more than 0.5 M of added Na2SiO3 concentration.

ZrO2완충층의 후열처리 조건이 Pt/SrBi2Ta2O9/ZrO2/Si 구조의 전기적 특성에 미치는 영향 (The Heat Treatment Effect of ZrO2 Buffer Layer on the Electrical Properties of Pt/SrBi2Ta2O9/ZrO2/Si Structure)

  • 정우석;박철호;손영국
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.52-61
    • /
    • 2003
  • R.F 마그네트론 스퍼터링법으로 ZrO$_2$ 확산 방지막과 SrBi$_2$Ta$_2$$O_{9}$ 강유전 박막을 증착하여 MFIS 구조론 제작하였다. 절연층의 후열처리가 절연층 및 MFIS 구조의 전기적 특성에 미치는 영향을 관찰하기 위해서 일반 분리기로와 RTA로에서 각각 산소 분위기와 아르곤 분위기에서 550~85$0^{\circ}C$의 온도범위에서 후열처리를 행한 후, C-V 특성 및 누설전류 특성을 분석하였다. RTA 75$0^{\circ}C$ 산소 분위기에서 후열처리된 20nm의 두께를 가지는 ZrO$_2$ 박막에서 최대의 메모리 윈도우 값을 얻었다. Pt/SBT(260nm)ZrO$_2$(20nm)/Si 구조는 Pt/SBT(260nm)/Si 구조의 값보다 C-V 특성 및 누설전류 특성이 우수하였으며 이러한 결과는 ZrO$_2$ 박막이 SBT와 Si사이에서 우수한 완충층의 역할을 함을 알 수 있었다.

표면텍스처링된 이중구조 Ag/Al:Si 후면반사막의 광산란 특성 (Light Scattering Properties of Highly Textured Ag/Al:Si Bilayer Back Reflectors)

  • 장은석;백상훈;장병열;박상현;윤경훈;이영우;조준식
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.573-579
    • /
    • 2011
  • Highly textured Ag, Al and Al:Si back reflectors for flexible n-i-p silicon thin-film solar cells were prepared on 100-${\mu}m$-thick stainless steel substrates by DC magnetron sputtering and the influence of their surface textures on the light-scattering properties were investigated. The surface texture of the metal back reflectors was influenced by the increased grain size and by the bimodal distribution that arose due to the abnormal grain growth at elevated deposition temperatures. This can be explained by the structure zone model (SZM). With an increase in the deposition temperatures from room temperature to $500^{\circ}C$, the surface roughness of the Al:Si films increased from 11 nm to 95 nm, whereas that of the pure Ag films increased from 6 nm to 47 nm at the same deposition temperature. Although Al:Si back reflectors with larger surface feature dimensions than pure Ag can be fabricated at lower deposition temperatures due to the lower melting point and the Si impurity drag effect, they show poor total and diffuse reflectance, resulting from the low reflectivity and reflection loss on the textured surface. For a further improvement of the light-trapping efficiency in solar cells, a new type of back reflector consisting of Ag/Al:Si bilayer is suggested. The surface morphology and reflectance of this reflector are closely dependent on the Al:Si bottom layer and the Ag top layer. The relationship between the surface topography and the light-scattering properties of the bilayer back reflectors is also reported in this paper.

다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구 (A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory)

  • 오우영;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

Co Ion-implanted GaN and its Magnetic Properties

  • Kim, Woo-Chul;Kang, Hee-Jae;Oh, Suk-Keun;Shin, Sang-Won;Lee, Jong-Han;Song, Jong-Han;Noh, Sam-Kyu;Oh, Sang-Jun;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.16-19
    • /
    • 2006
  • $2-\mu{m}$ thick GaN epilayer was prepared, and 80 KeV $Co^{-}$ ions with a dose of $3X10^{16}\;cm^{-2}$ were implanted into GaN at $350^{\circ}C$. The implanted samples were post annealed at $700^{\circ}C$. We have investigated the magnetic and structural properties of Co ion-implanted GaN by various measurements. HRXRD results did not show any peaks associated with second phase formation and only the diffraction from the GaN layer and substrate structure were observed. SIMS profiles of Co implanted into GaN before and after annealing at $700^{\circ}C$ have shown a projected range of $\sim390\AA$ with 7.4% concentration and that there is little movement in Co. AFM measurement shows the form of surface craters for $700^{\circ}C$-annealed samples. The magnetization curve and temperature dependence of magnetization taken in zero-field-cooling (ZFC) and field-cooling (FC) conditions showed the features of superparamagnetic system in film. XPS measurement showed the metallic Co 2p core levels spectra for $700^{\circ}C$-annealed samples. From this, it could be explained that magnetic property of our films originated from Co magnetic clusters.

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Improved Magnetic Anisotropy of YMn1-$xCrxO_3 $ Compounds

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.218-218
    • /
    • 2012
  • Recently, hexagonal manganites have attracted much attention because of the coexistence of ferroelectricity and antiferromagnetic (AFM) order. The crystal structure of hexagonal manganites consists of $MnO_5$ polyhedra in which $Mn^{3+}$ ion is surrounded by three oxygen atoms in plane and two apical oxygen ions. The Mn ions within Mn-O plane form a triangular lattice and couple the spins through the AFM superexchange interaction. Due to incomplete AFM coupling between neighboring Mn ions in the triangular lattice, the system forms a geometrically-frustrated magnetic state. Among hexagonal manganites, $YMnO_3$, in particular, is the best known experimentally since the f states are empty. In addition, for applications, $YMnO_3$ thin films have been known as promising candidates for non-volatile ferroelectric random access memories. However, $YMnO_3$ has low magnetic order temperature (~70 K) and A-type AFM structure, which hinders its applications. We have synthesized $YMn1_{-x}Cr_xO_3$ (x = 0, 0.05 and 0.1) samples by the conventional solid-state reaction. The powders of stoichiometric proportions were mixed, and calcined at $900^{\circ}C$ for $YMn1_{-x}Cr_xO_3$ for 24 h. The obtained powders were ground, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, and heated up to $1,300^{\circ}C$ and sintered in air for 24 h. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K{\alpha}$ radiation. All the magnetization measurements were carried out with a superconducting quantum-interference-device magnetometer. Our experiments point out that the Cr-doped samples show the characteristics of a spin-glass state at low temperatures.

  • PDF

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Over 8% efficient nanocrystal-derived Cu2ZnSnSe4 solar cells with molybdenum nitride barrier films in back contact structure

  • Pham, Hong Nhung;Jang, Yoon Hee;Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.426.2-426.2
    • /
    • 2016
  • Numerous of researches are being conducted to improve the efficiency of $Cu_2ZnSnSe_4$ (CZTSe)-based photovoltaic devices, which is one of the most promising candidates for low cost and environment-friendly solar cells. In this work, we concentrate on the back contact of the devices. A proper thickness of $MoSe_2$ in back contact structure is believed to enhance adhesion and ohmic contact between Mo back contact and absorber layer. Nevertheless, too thick $MoSe_2$ layers that are grown during high-temperature selenization process can impede the current collection, thus resulting in low cell performance. By applying molybdenum nitride as a barrier in back contact structure, we were able to control the thickness of $MoSe_2$ layer, which resulted in lower series resistance and higher fill factor of CZTSe devices. The phase transformation of Mo-N binary system was systematically studied by changing $N_2$ concentration during the sputtering process. With a proper phase of Mo-N fabricated by using an adequate partial pressure of $N_2$, the efficiency of CZTSe solar cells as high as 8.31% was achieved while the average efficiency was improved by about 2% with respect to that of the referent cells where no barrier layer was employed.

  • PDF