• Title/Summary/Keyword: Thick Films

Search Result 948, Processing Time 0.044 seconds

Magnetization Angle and Thickness Dependence of Perpendicular Exchange Anisotropy in [Pd/Co]n/FeMn Films

  • Choi, S.D.;Joo, H.W.;Yun, D.K.;Lee, M.S.;Lee, K.A.;Lee, H.S.;Kim, S.W.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.70-73
    • /
    • 2006
  • The magnetization angle and thickness dependence of magnetic anisotropy in the exchange-biased [Pd/Co]${\times}$5/FeMn multilayers with an out-of-plane anisotropy were investigated to determine the origin of perpendicular exchange biasing. As the Co thickness increased to 1.5 nm in the [Pd(0.8 nm)/Co(t)]${\times}$5/FeMn(120 nm) films, the hysteresis loops were converted from square loops at a thin Co (<0.4 nm) to complicated round ones at a thick Co. The irregularly asymmetric step (IAS) at the left top of the loop appeared in the loop of the 0.6-nm Co film due to an inhomogeneity in the exchange anisotropy. As the Pd thickness increased to 1.6 nm, the step disappeared, and the perpendicular magnetic anisotropy was maximized in the Co thickness between 0.6 and 0.9 nm. The conversion of the magnetization loop along the magnetization angle coincided with the equation $H_{(eff)}=H_o\;cos{\theta}$. The IAS of the 0.8-nm Pd film disappeared after thermal annealing up to $200^{\circ}C$ under an external magnetic field.

Exchange Bias Study by FMR Measurment (강자성 공명에 의한 Exchange Bias 연구)

  • Yoo, Yong-Goo;Park, Nam-Seok;Min, Seong-Gi;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2005
  • Exchange bias effect of a various layered thin films were studied by FMR measurment. In plane angular dependence of a resonance field distribution which measured by FMR was analysed as a combined effect of an unidirectional anisotropy and an uniaxial anisotropy. Exchange biased NiFe/IrMn, IrMn/NiFe/IrMn, and NiFe/IrMn/CoFe thin films showed larger unidirectional anisotropy field and uniaxial anisotropy field with compared to that of an unbiased NiFe single thin film. In case of NiFe/Cu/IrMn, the film with thick Cu layer exhibited a similar trend to the unbiased NiFe thin film. NiFe/IrMn/CoFe thin film showed two resonance field distribution due to different ferromagnetic layers. In additon to the resonance field, the line width was also analysed with related to exchange bias effect.

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates (다양한 금속 기판재료에 따른 그래핀의 유도결합 플라즈마 화학기상 성장 특성)

  • Kim, Dong-Ok;Trung, Tran Nam;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.694-699
    • /
    • 2014
  • We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

Effect of Microstructure of Quantum Dot Layer on Electroluminescent Properties of Quantum Dot Light Emitting Devices (양자점 층의 미세구조 형상이 양자점 LED 전계 발광 특성에 미치는 효과)

  • Yoon, Sung-Lyong;Jeon, Minhyon;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.430-434
    • /
    • 2013
  • Quantum dots(QDs) with their tunable luminescence properties are uniquely suited for use as lumophores in light emitting device. We investigate the microstructural effect on the electroluminescence(EL). Here we report the use of inorganic semiconductors as robust charge transport layers, and demonstrate devices with light emission. We chose mechanically smooth and compositionally amorphous films to prevent electrical shorts. We grew semiconducting oxide films with low free-carrier concentrations to minimize quenching of the QD EL. The hole transport layer(HTL) and electron transport layer(ETL) were chosen to have carrier concentrations and energy-band offsets similar to the QDs so that electron and hole injection into the QD layer was balanced. For the ETL and the HTL, we selected a 40-nm-thick $ZnSnO_x$ with a resistivity of $10{\Omega}{\cdot}cm$, which show bright and uniform emission at a 10 V applied bias. Light emitting uniformity was improved by reducing the rpm of QD spin coating.At a QD concentration of 15.0 mg/mL, we observed bright and uniform electroluminescence at a 12 V applied bias. The significant decrease in QD luminescence can be attributed to the non-uniform QD layers. This suggests that we should control the interface between QD layers and charge transport layers to improve the electroluminescence.

Effect of Thickness on Electrical Properties of PVDF-TrFE (51/49) Copolymer

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.881-884
    • /
    • 2008
  • In this study, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) in the composition from 51/49, was deposited on platinum for a metal-ferroelectric-metal structure. From XRD patterns, the 70 nm- and 140 nm-thick PVDF-TrFE films showed the intensity peak of near $20^{\circ}$ connected to a ferroelectric phase. Moreover, the thicker film indicated the higher intensity than thinner one. The difference of the remanent polarization (2Pr) at 0 V is decreased gradually from 10.19 to $5.7{\mu}C/cm^2$ as the thickness decrease from 140 to 70 nm. However, when the thickness decreased to 50 nm, the 2Pr rapidly drop to $1.6{\mu}C/cm^2$ so the minimum critical thickness might be at least 70 nm for device. Both different thickness films, 70 and 140 nm, indicated that the characteristic of current density-voltage was measured for $10^{-6}{\sim}10^{-7}A/cm^2$ below 15 V and the thicker film maintained relatively lower current density than thinner one. From these results, we can expect that the electrical properties for the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer were able to be on the trade-off relationship between the remanent polarization with the bias voltage and the leakage current.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Electrical Properties of the Amorphous BaTi4O9 Thin Films for Metal-Insulator-Metal Capacitors (Metal-Insulator-Metal 캐패시터의 응용을 위한 비정질 BaTi4O9 박막의 전기적 특성)

  • Hong, Kyoung-Pyo;Jeong, Young-Hun;Nahm, Sahn;Lee, Hwack-Joo
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.574-579
    • /
    • 2007
  • Amorphous $BaTi_4O_9$ ($BT_4$) film was deposited on Pt/Si substrate by RF magnetron sputter and their dielectric properties and electrical properties are investigated. A cross sectional SEM image and AFM image of the surface of the amorphous $BT_4$ film deposited at room temperature showed the film was grown well on the substrate. The amorphous $BT_4$ film had a large dielectric constant of 32, which is similar to that of the crystalline $BT_4$ film. The leakage current density of the $BT_4$ film was low and a Poole-Frenkel emission was suggested as the leakage current mechanism. A positive quadratic voltage coefficient of capacitance (VCC) was obtained for the $BT_4$ film with a thickness of <70 nm and it could be due to the free carrier relaxation. However, a negative quadratic VCC was obtained for the films with a thickness ${\geq}96nm$, possibly due to the dipolar relaxation. The 55 nm-thick $BT_4$ film had a high capacitance density of $5.1fF/{\mu}m^2$ with a low leakage current density of $11.6nA/cm^2$ at 2 V. Its quadratic and linear VCCs were $244ppm/V^2$ and -52 ppm/V, respectively, with a low temperature coefficient of capacitance of $961ppm/^{\circ}C$ at 100 kHz. These results confirmed the potential suitability of the amorphous $BT_4$ film for use as a high performance metal-insulator-metal (MIM) capacitor.