• Title/Summary/Keyword: Thiazoles

Search Result 27, Processing Time 0.019 seconds

Analysis of Volatile Flavor Compounds in Sesame Oil Extracted by Purge-and-Trap Method (Purge-and-Trap법에 의해 추출한 참기름 향기성분 분석)

  • Lee, Sang-Hwa;Joo, Kwang-Jee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.260-265
    • /
    • 1998
  • In this study, volatile flavor compounds in sesame oils were analyzed by using pure-and-trap method and a gas chromatography. 2-ethoxy-3-ethylpyrazine was used as an internal standard and retention index (Kovat's number) for the volatiles were determined through the use of a n-paraffin $(C_5-C_{25})$ standards. A total of 33 volatile compounds including 14 pyrazines, 7 thiazoles, 4 pyridines, 2 oxazoles and 6 others were identified in the sesame oils. By comparing the total yields of volatile flavor compounds, the pyrazines are the most abundant compounds all of the oil samples and considered as good contributor to characteristic flavor of sesame oil. The oil from the seeds roasted in the electric pan at $200^{\circ}C$ and $230^{\circ}C$ for 10 minutes generated 277.06 ppm, 264.81 ppm in pyrazine and 15.16 ppm, 13.19 ppm in thiazole, respectively. The sensory evaluation of oil samples was also investigated. The sesame oil obtained from the sesame seeds roasted at $200^{\circ}C$ for 10 minutes with electric pan showed good flavor scores and quality among the all of samples.

  • PDF

Analysis of Significant Factors in the Flayer of Traditional Korean Soy Sauce (III) - Aroma Compound Analysis - (한국전통간장의 맛과 향에 관여하는 주요 향미인자의 분석(III) -향기성분 분석 -)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Park, Ok-Jin
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • This study was carried out in order to investigate effective aroma components of Korean traditional soy sauce. Volatile aroma compounds were extracted by solvent extraction, TMS esterification of methyl acetate extracts and SDE, and analyzed by GC/MSD. 140 voltile aroma compounds were detected by three different extraction methods. Most abundant volatile compounds were acids and phenols and identified aldehydes, hydrocarbons, ketones, furans, furanone, alcohols, esters, nitrogen compounds, sulfur compounds and thiazoles, too. In the analytical sensory evaluation of soy sauce aroma, there were significant differences between each soy sauce sample in all test item. To sum up, Sweet odor was high in Kyupjang. Nutty odor and traditional soy sauce odor were similarly high in Kyupjang and high concentration soy sauce. Kyupjang had high score in overall odor preference than Chungiangs. The result of multiple regression of soy sauce odor characteristics and gas chromatography pattern demonstrated that offensive and sour odor was affected by octadecanoic acid. Contributive compounds to sweet odor were 1,2-benzenedicarboxylic acid and 3,6-dioxa-2,7-disilacotane. Benzoic acid 4-methyl ethyl ester and nonacotane were identified as major compounds of nutty odor. Contribu live variables of traditional soy sauce odor were benzoic acid 4-methyl ethyl ester and 9,12-octadecadienoic acid. The main factors of odor preference were 3-methyl pentanoic acid, acetic acid, 2,6-dimethyl heptadecane and 3,6-dioxa-2,7-disilacotane.

  • PDF

Oxidative Stability and Flavor Compounds of Sesame Oils Blended with Vegetable Oils (식물성유를 첨가한 참기름 혼합유의 산화 안정성과 향기 성분)

  • Joo, Kwang-Jee;Kim, Jin-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.984-991
    • /
    • 2002
  • Oxidative stability and flavor of sesame oil blended with canola oil (Ca), corn oil (Co), and soybean oil (Sb) at ratios of 90 : 10, 70 : 30, and 50 : 50 (w/w), respectively, were evaluated. Oxidative stability of sesame oil increased with the addition of vegetable oils (10, 30, and 50% of Ca and Co, and 10% of Sb). Pyrazines, pyrroles, pyridines, and thiazoles, good contributors to the characteristic flavor of sesame oil, were also found in sesame oil blended with vegetable oil. The sensory evaluation showed that no difference was observed between sesame oil and sesame oil blended with 10% of Ca, Co or Sb, which showed higher oxidative stability.

Differential Expression of Xenobiotic-Matabolizing Enzymes by Benzylisothiazole in Association with Hepatotoxicity: Effects on Rat Hepatic Epoxide Hydrolase, Glutathione S-Transferases and Cytochrome P450s

  • Cho, Min- Kyung;Kim, Sang-Geon
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 1998
  • Previous studies have shown that the heterocycles including thiazoles are efficacious in inducing phase phase II metabolizing enzyme as well as certain cytochrome P450s and that the inductin of these matabolizing enzymes by the heterocyclic agents is highly associated with their hepatotoxicity. In the present study, the effects of benzylisothiazole (BIT), which has a isothiazole moiety, on the expression of microsomal epoxide hydrolase (mEH), major glutathione S-transerases and cytochrome P450s were studied in the rat liver in association with its hepatotoxicity. Treatment of rats with BIT(1.17 mmol/kg, 1~3d) resulted in substantial increases in the mEH. rGSTA2, rGSTA2, rGSTM1 and rGSTM2 mRNA levels, whereas rGSTA3 and rGSTA5 mRNA levels were increased to much lesser extents. A time-course study showed that the mRNA levels of mEH and rGSTs were greater at 24hr after treatment than those after 3 days of consecutive treatment. Relative changes in mEH and rGST mRNA levels were consistent with those in the proteins, as assessed by Western immunoblot analysis. Hepatic cytochrom P450 levels were monitored after BIT treatment under the assumption that metabolic activation of BIT may affect expression of the enzymes in conjunction with hepatotoxicity. Immunoblot analysis revealed that cytochrome P450 2B1/2 were 3-to 4-fold induced in rats teatd with BIT(1.17 mmol/kg/day.3days), whereas P450 1A2, 2C11 and 3A1/2 levels were decreased to 20~30% of those in unteatd rats. P450 2E1 was only slightly decreased by BIT. Thus, the levels of several cytochrome P450s were suppressed by BIT treatment. Rats treated with BIT at the dose of 1.17mmol/kg for 3 days exhibited extensive multifocal nodular necrosis with moderate to extensive diffuse liver cell degeneration. No notable toxicity was observed in the kidney. These results showed that BIT induces mEH and rGSTs in the liver with increases in the mRNA levels, whereas the agent significantly decreased major cytochrome P450s. The changes in the detoxifying enzymes might be associated with the necrotic liver after consecutive treatment.

  • PDF

Flavor Components in the Bellflower Roots (Platycodon glaucum Nakai) (도라지 뿌리의 향기성분에 관하여)

  • Chung, Tae-Yung;Kim, Jeong-Lim;Hayase, Fumitaka;Kato, Hiromichi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.136-146
    • /
    • 1987
  • Flavor components were trapped by stimultaneous steam distillation-extraction method for investigating it in the bellflower roots and fractionated into four groups such as a neutral, a basic, a phenolic and an acidic fraction. An acidic fraction methylated with diazomethane solution and three others were analysed by GC and GC-MS equipping a fused silica capillary column, and S-containing compounds in these were detected with a flame photometric detector (FPD). The total of one hundred and three compounds from the bellflower roots were identified: they were 6 aliphatic hydrocarbons, 10 aromatic hydrocarbons, 2 terpene hydrocarbons, 12 alcohols, 8 terpene alcohols, 17 aldehydes, 3 terpene aldehydes, 5 ketones, 5 esters, 3 furans, 2 thiazoles, 2 lactones, 2 sulfides, 9 phenols, l2 carboxylic acids and 5 others. The greater part of the others except carboxylic acids were identified from a neutral fraction of which was assumed to be indispensable for the reproduction of bellflower root odor in a sensory evaluation. As a result of a sensory evaluation, 1-hexanal, trans-2-hexenal, 1-hexanol, cis-3-hexenol, trans-2-hexenol, 1-octen-3-ol and so forth identified in a neutral fraction were considered to be the key compounds of grass-like odor in the bellflower roots.

  • PDF

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF