• Title/Summary/Keyword: Thiadiazole

Search Result 51, Processing Time 0.018 seconds

Induction of Disease Resistance by Acibenzolar-S-methyl, the Plant Activator against Gray Mold (Botrytis cinerea) in Tomato Seedlings (저항성 유도물질(acibenzolar-S-methyl)처리에 의한 토마토 잿빛곰팡이병 발병억제)

  • Lee Jung-Sup;Kang Nam-Jun;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The plant defence activator, Acibenzolar-S-methyl [benzo (1,2,3) thiadiazole-7-carbothioic acid-S-methyl ester, ASM] was assayed on tomato seedlings for its ability to induce resistance against Botrytis cinerea, the causal agent of gray mold in tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the mycelium in plants. In ASM treated plants, reduction in disease severity (up to 55%) was correlated with suppression of mycelia growth (up to 46.5%) during the time course of infection. In plants treated with ASM, activities of peroxidase were determined as markers of resistance. Applications of ASM induced Progressive and significant increase of the enzyme in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of the enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in mycelium growth in ASM treated plants might be due to the increase in activity of oxidative and antioxidative protection systems in plants.

Antimicrobial Assessment of Some Heterocyclic Compounds Utilizing Ethyl 1-Aminotetrazole-5-carboxylate (Ethyl 1-Aminotetrazole-5-carboxylate로부터 유도된 헤테로고리 화합물들의 항균 활성 시험)

  • Taha, Mamdouh A. M.;El-Badry, Susan M.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.414-418
    • /
    • 2010
  • Ethyl 1-aminotetrazole-5-carboxylate (1) reacted with hydrazine hydrate to give the corresponding aminohydrazide 2. Cyclization of 2 by carbon disulfide yielded 1,3,4-oxadiazole-5-thiol structure 3. Reaction of 3 with either chloroacetone or ethyl chloroacetate furnished S-acyl 1,3,4-oxadiazole derivatives 4 and 5, respectively. Also compound 3 reacted with hydrazine hydrate afforded 4-amino-1,2,4-triazole-5-thiol derivative 6. 6-Methyl-1,3,4-triazolo[3,4-b]-1,3,4-thiadiazole structure 7 was synthesized by reaction of aminothiol 6 with glacial acetic acid. Diazotization of 1 with sodium nitrite in presence of hydrochloric acid yielding the diazonium salt which on treating with hippuric acid, oxazolone derivative 8 was obtained. Furthermore, tetrazolo[5,1-f]-1,2,4-triazine 9 was constructed via cyclization of aminoester 1 with formamide. Compound 9 reacted with carbon disulfide to furnish 8-thione derivative 10 which reacting with chloroacetone, ethyl chloroacetate, and hydrazine hydrate, the corresponding chemical structures 11, 12, and 13 were synthesized. 1,2,4-Triazolo[4,3-d]tetrazolo[5,1-f]-1,2,4-triazines 14 and 15 were resulted by treating of compound 13 with triethyl orthoformate, and glacial acetic acid, respectively. The structures of the newly synthesized products were elucidated according to elemental analyses and spectroscopic evidences. Some of the representative members of the prepared compounds were screened for antimicrobial activity.

Synthesis of New Heterocycles Derived from 3-(3-Methyl-1H-indol-2-yl)-3-oxopropanenitrile as Potent Antifungal Agents

  • Gomha, Sobhi M.;Abdel-Aziz, Hatem A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2985-2990
    • /
    • 2012
  • New thiazoline derivatives 7a-c, and thiophenes 9a-c linked to indole moiety were easily prepared via the reaction of the acrylamide derivative 3 with phenacyl bromides 4a-c, depending on the reaction conditions. In addition, the reaction of compound 3 with hydrazonoyl chlorides 11a-f afforded a series of 1,3,4-thiadiazole derivatives 13a-f. Moreover, coupling of 3-(3-methyl-1H-indol-2-yl)-3-oxopropanenitrile (2) with the diazonium salts of 3-phenyl-5-aminopyrazole 16 or 3-amino-1,2,4-triazole 17 gave the corresponding hydrazones 18 and 19, respectively. Cyclization of the latter hydrazones yielded the corresponding pyrazolo[5,1-c]-1,2,4-triazine and 1,2,4-triazolo[5,1-c]-1,2,4-triazine derivatives 20 and 21, respectively. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, $^1H$ NMR and mass spectral data. All the synthesized compounds were tested for in vitro activities against certain strains of fungi such as Aspergillus niger, Aspergillus nodulans, Alternaria alternate. Compounds showed marked inhibition of fungal growth nearly equal to the standards.

Development of a Screening System for Plant Defense-Inducing Agent using Transgenic Tobacco Plant with PR-1a Promoter and GUS Gene

  • Oh, Sang-Keun;Lee, Seon-Woo;Kwon, Suk-Yoon;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.288-292
    • /
    • 2005
  • Pathogenesis-related protein-1a (PR-1a) is strongly induced in tobacco plants by pathogen attack, exogenous salicylic acid (SA) application and by other developmental processes. In order to develop a rapid screening system for the selection of plant defense-inducing compounds originated from various sources, we have transformed tobacco Samsun NN plants with a chimeric construct consisting of GUS $(\beta-glucuronidase)$. In the $T_1$ generation, three transgenic lines having stable GUS expression were selected for further promoter analysis. Using GUS histochemical assay, we observed strong GUS induction driven by PR-1a promoter in PR1a-GUS transgenic tobacco leaves in response to the exogenous application of SA or benzol (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a SA­derivative compound. In addition, GUS expression was maintained locally or systemically in PR1a-GUS transgenic line $\#5\;T_2$ generation) until after 3 days when they were treated with same chemicals. Our results suggested that the PR1a-GUS reporter gene system in tobacco plants may be applicable for the large-scale screening of defense-inducing substances.

Synthesis of New 2-Thiouracil-5-Sulphonamide Derivatives with Antibacterial and Antifungal Activity

  • Fathalla O. A.;Awad S. M.;Mohamed M. S.
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1205-1212
    • /
    • 2005
  • 2-Thiouracil-5-sulphonic acid N-(4-acetylphenyl) Amide (1) was reacted with a series of aromatic aldehydes giving chalcones 2 (Claisen-Schemidt reaction), some of these chalcones were reacted with urea and thiourea giving pyrimidine-2-one and pyrimidine-2 thione derivatives respectively of the type 3a,b and 4a,b. In addition many chalcones were reacted with hydroxylamine hydrochloride giving isoxazoline derivatives 5a,b. They could also reacted with phenylhydrazine to give pyrazoline derivatives 5a,b, chalcones also were reacted withethylcyano acetate and/or malononitryl in pyridine giving pyran derivatives 7a,c and 8a,c. In another pathway chalcones were epoxidised by $H_{2}O_{2}$ giving epoxides 9a,c which in turn were reacted with phenylhydrazine giving 4-hydroxypyrazoline derivatives 10a,c. In another reaction chalcones were reacted with ethylcyanoacetate in presence of amm.acetate giving pyridone derivatives 11a,d which could be prepared also in exellent yield from compound 1 by its reaction with certain aromatic aldehydes and ethylcyanoacetate in presence of ammonium acetate. Finally, compound 1 was reacted with semicarbazide giving semicarbazone intermediate 12 which in turn was reacted with thionyl chloride giving thiadiazole derivative 13. The biological effects of some of the new synthesized compounds were also investigated.

Studies on the Synthesis and Antibacterial Activities of 7-Thiazinylcephalosporin Derivatives (7-티아지닐 세파로스포린 유도체의 합성과 생리활성에 관한 연구)

  • Lee, Young-Haeng;Chai, Kyu-Yun;Hyang, Sun-Am;Choi, Won-Sik
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.473-479
    • /
    • 1997
  • New cephalosporin antibiotics, 7-[(3,4-dihydro-6-methoxycarbonyl-2,2-dimethyl-2H-1,4-thiazin-3-yl)acetamido]-3-substituted-3-cephem-4-carboxylic acid derivatives 2a-2d, 7 -[(3,4-dihydro-6-ethoxycarbonyl-2,2-dimethyl-2H-1,4-thiazin-3-yl)acetamido] -3-substituted-3-cephem-4-carboxylic acid derivatives 3a-3d and 7-[(3,4-dihydro-6-methoxycarbonyl-2,2-dimethyl-2H-1,4-thiazin-3-yl-1-(S)-oxide)acetamido]-3-substituted-3-cephem-4-carboxylic acid derivatives 4a-4d were synthesized. Antibacterial activities of these new cephalosporin derivatives and the relationship between their structures and their activities were examined. Among them, 7-[(3,4-dihydro-6-methoxycaronyl-2,2-dimethyl-2H-1,4-thiazin-3-yl-1-(S)oxide)-acetamido]-3-[(1,2,3-triazol-5-yl)thiomethyl]-3-cephem-4-carboxylic acid 4d exhibited the antibacterial activities against Gram(+)and Gram(-) bacteria.

  • PDF

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Heterocyclic Systems Containing Bridgehead Nitrogen Atom:Synthesis and Evaluation of Biological Activity of Imidazo[2,1-b]-1,3,4-thiadiazolo [2,3-c]-s-triazoles, s-Triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]quinoxaline and bis-(s-Triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b][imidazo[4,5-b]-cyclohexane]-5a,6a-diene)

  • Kumar, Parvin;Kuamr, Ashwani;Mohan, Late Jag;Makrandi, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3304-3308
    • /
    • 2010
  • Condensation of 4-amino-5-mercapto-3-($\alpha$-naphthyl)-s-triazole (1) with cyanogen bromide gives 6-amino-3-($\alpha$-naphthyl)-s-triazolo[3,4-b]-1,3,4-thiadiazole (2) which on condensation with chloranil yields 3,9-di-($\alpha$-naphthyl)-6,14-dioxo-bis-(s-triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]cyclohexane]-5a,6a-diene) (3). 3-($\alpha$-naphthyl)-s-triazolo[3,4-b]-1,3,4-thiadiazolo[3,2-b]imidazo[4,5-b]quinoxaline (4) is obtained by a similar condensation of (2) with 2,3-dichloroquinoxaline. The reaction of (2) with $\alpha$-haloketones followed by bromination affords 7-aryl-3-($\alpha$-naphthyl)-imidazo[2,1-b]-1,3,4-thiadiazolo[2,3-c]-s-triazoles (5) and their 6-bromo analogues 6 respectively. The structures of all newly synthesized compounds were established on the basis of elemental analyses, IR, $^1H$-NMR. The antibacterial and antifungal activities of all newly synthesized compounds have also been evaluated.

Some Pyridyl- and Thiophenyl-Substituted 1,2,4-Triazolo[3,4-b]1,3,4-thiadiazole Derivatives as Potent Antibacterial

  • Maqsood, Muhammad Rizwan;Hanif, Muhammad;Rafiq, Muhammad;Saleem, Muhammad;Zaib, Sumera;Khan, Aftab Ahmed;Iqbal, Mazhar;Iqbal, Jamshed;Rama, Nasim Hasan;Seo, Sung-Yum;Lee, Ki-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4180-4184
    • /
    • 2012
  • The target compounds 6-11a-e were synthesized by condensing 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones 5a-f with various aromatic carboxylic acids in the presence of phosphorous oxychloride. The structures of newly synthesized compounds were characterized by IR, $^1H$ NMR, $^{13}C$ NMR, elemental analysis and mass spectrometric studies. All the synthesized compounds were screened for their antibacterial activity. Almost all the tested compounds were potent against four different strains of bacteria when compared with that of reference drug ciprofloxacin. Compounds 6c, 6e, 8d, 9b, 9e, 11a and 11b showed nearly equal or lower MIC values than standard drug, against all four tested bacterial strains but rest of the compounds showed excellent antibacterial activities.