• 제목/요약/키워드: Theta-compact

검색결과 22건 처리시간 0.018초

열처리에 따른 다공성 알루미늄 합금 재료의 미세구조와 기계적 성질 변화 (Evolution of Microstructure and Mechanical Properties of Porous Al Alloy Under Various Heat Treatment)

  • 류관무;권영재;김준규;조원승;조남희;황진명;유연철
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.588-596
    • /
    • 2003
  • The relationships between evolution of microstructure and mechanical properties of porous Al-3Si-2Mg-2Cu alloy after the foaming and various heat treating were investigated. The foamed alloy having various densities were manufactured by powder compact foaming and heat treated. Then compression test was performed with deformation rate of 0.5/s. The ultimate compression strength was not changed after solution heat treatment but the flow curve after ultimate strength showed very smooth and uniform plateau region. This change of flow curve means that the deformation mechanism is altered from brittle fracture to ductile deformation and the energy absorption property of Al foam is dramatically improved. The improvement of energy absorption without any detriment of mechanical properties is due to that the very brittle precipitation like Al-Cu and Al-Mg was uniformly dissolved in Al matrix after solution heat treatment. And various mechanical properties of Al alloy porous material were improved by 40% with aging of $200^{\circ}C$ and 50min. These improvements are ascribe to the various fine precipitates like $\Omega$ and $\theta$'.

Microstructural Investigations of $Al_2O_3$ Scale Formed on FeCrAl Steel during High Temperature Oxidation in $SO_2$

  • Homa, M.;Zurek, Z.;Morgiel, B.;Zieba, P.;Wojewoda, J.
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.139-144
    • /
    • 2008
  • The results of microstructure observations of the $Al_2O_3$ scale formed on a Fe-Cr-Al steel during high temperature oxidation in the $SO_2$ atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with "whiskers", which look like very thin platelets and have random orientation. The cross section of a sample shows, that the "whiskers" are approximately $2{\mu}m$ high, however the compact scale layer on which they reside is $0.2{\mu}m$ thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the $\theta-Al_2O_3$ phase and a residual amount of $\alpha-Al_2O_3$.