• Title/Summary/Keyword: Theta projection method

Search Result 9, Processing Time 0.024 seconds

The Analysis of Creep characteristics for Turbine blade using Theta projection method (θ 투영법을 이용한 터빈 블레이드의 크리프 특성 분석)

  • Lee, Mu-Hyoung;Han, Won-Jae;Jang, Byung-Wook;Lee, Bok-Won;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.321-331
    • /
    • 2011
  • The present work is aimed to analyze the creep characteristics of a turbojet engine turbine blade using the theta projection method. The theta projection method has been widely used due to its advantages and flexibility. For the creep characteristic analysis of the turbine blade, tests are performed considering the operating conditions and the non-linear material properties. Results from the creep test are fitted using the four theta model. The predicted proprieties using the four theta model are compared with the prediction model and creep test results. To obtain an optimum value of the four theta parameters in non-linear square method, a number of computing processes in the non-linear least square method were carried out to obtain full creep curves. Results using the theta model has more than 0.95 value of $R^2$. The results between the experimental values and predicted four theta model has about 90.0% accuracy. The theta projection method can be utilized for a design purpose to predict the creep behavior.

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

Fast 3D mesh generation using projection for line laser-based 3D Scanners (라인 레이저 기반 3차원 스캐너에서 투영을 이용한 고속 3D 메쉬 생성)

  • Lee, Kyungme;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.513-518
    • /
    • 2016
  • This paper presents a fast 3D mesh generation method using projection for line laser-based 3D scanners. The well-known method for 3D mesh generation utilizes convex hulls for 4D vertices that is converted from the input 3D vertices. This 3D mesh generation for a large set of vertices requires a lot of time. To overcome this problem, the proposed method takes (${\theta}-y$) 2D depth map into account. The 2D depth map is a projection version of 3D data with a form of (${\theta}$, y, z) which are intermediately acquired by line laser-based 3D scanners. Thus, our 2D-based method is a very fast 3D mesh generation method. To evaluate our method, we conduct experiments with intermediate 3D vertex data from line-laser scanners. Experimental results show that the proposed method is superior to the existing method in terms of mesh generation speed.

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul;Han, Sangbae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.917-925
    • /
    • 2022
  • Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

Fast Computation of the Visibility Region Using the Spherical Projection Method

  • Chu, Gil-Whoan;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • To obtain visual information of a target object, a camera should be placed within the visibility region. As the visibility region is dependent on the relative position of the target object and the surrounding object, the position change of the surrounding object during a task requires recalculation of the visibility region. For a fast computation of the visibility region so as to modify the camera position to be located within the visibility region, we propose a spherical projection method. After being projected onto the sphere the visibility region is represented in $\theta$-$\psi$ spaces of the spherical coordinates. The reduction of calculation space enables a fast modification of the camera location according to the motion of the surrounding objects so that the continuous observation of the target object during the task is possible.

An Efficient Lane Detection Based on the Optimized Hough Transform (최적화된 Hough 변환에 근거한 효율적인 차선 인식)

  • Park Jae-Hyeon;Lee Hack-Man;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.406-412
    • /
    • 2006
  • In this paper, we propose OHT(optimized nough Transform) algorithm for the lane extraction. Input image is changed into 256 gray revel image. Gray level image is separated into background region and road region by using limited horizontal projection value. In separated road area, we apply OHT algorithm. OHT algorithm is characterized as follows. First, the number of candidate pixels is reduced using the outline orientation of the lane. Second, each range of the left and right lane is defined by limited ${\theta}$ Experimental results show that the proposed method is better than Hough Transform.

Skewed Angle Detection in Text Images Using Orthogonal Angle View

  • Chin, Seong-Ah;Choo, Moon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.62-65
    • /
    • 2000
  • In this paper we propose skewed angle detection methods for images that contain text that is not aligned horizontally. In most images text areas are aligned along the horizontal axis, however there are many occasions when the text may be at a skewed angle (denoted by 0 < ${\theta}\;{\leq}\;{\pi}$). In the work described, we adapt the Hough transform, Shadow and Threshold Projection methods to detect the skewed angle of text in an input image using the orthogonal angle view property. The results of this method are a primary text skewed angle, which allows us to rotate the original input image into an image with horizontally aligned text. This utilizes document image processing prior to the recognition stage.

  • PDF

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF