• Title/Summary/Keyword: Thermoplastic materials

Search Result 296, Processing Time 0.021 seconds

Feasibility Study of Deep Inspiration Breath-Hold Based Volumetric Modulated Arc Therapy for Locally Advanced Left Sided Breast Cancer Patients

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Kathirvel, Murugesan;Arun, Gandhi;Subramanian, Shanmuga
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.9033-9038
    • /
    • 2014
  • Background: The purpose of this study was to assess the feasibility of deep inspiration breath-hold (DIBH) based volumetric modulated arc therapy (VMAT) for locally advanced left sided breast cancer patients undergoing radical mastectomy. DIBH immobilizes the tumor bed providing dosimetric benefits over free breathing (FB). Materials and Methods: Ten left sided post mastectomy patients were immobilized in a supine position with both the arms lifted above the head on a hemi-body vaclock. Two thermoplastic masks were prepared for each patient, one for normal free breathing and a second made with breath-hold to maintain reproducibility. DIBH CT scans were performed in the prospective mode of the Varian real time position management (RPM) system. The planning target volume (PTV) included the left chest wall and supraclavicular nodes and PTV prescription dose was 5000cGy in 25 fractions. DIBH-3DCRT planning was performed with the single iso-centre technique using a 6MV photon beam and the field-in-field technique. VMAT plans for FB and DIBH contained two partial arcs ($179^{\circ}-300^{\circ}CCW/CW$). Dose volume histograms of PTV and OAR's were analyzed for DIBH-VMAT, FB-VMAT and DIBH-3DCRT. In DIBH mode daily orthogonal ($0^{\circ}$ and $90^{\circ}$) KV images were taken to determine the setup variability and weekly twice CBCT to verify gating threshold level reproducibility. Results: DIBH-VMAT reduced the lung and heart dose compared to FB-VMAT, while maintaining similar PTV coverage. The mean heart $V_{30Gy}$ was $2.3%{\pm}2.7$, $5.1%{\pm}3.2$ and $3.3%{\pm}7.2$ and for left lung $V_{20Gy}$ was $18.57%{\pm}2.9$, $21.7%{\pm}3.9$ and $23.5%{\pm}5.1$ for DIBH-VMAT, FB-VMAT and DIBH-3DCRT respectively. Conclusions: DIBH-VMAT significantly reduced the heart and lung dose for left side chest wall patients compared to FB-VMAT. PTV conformity index, homogeneity index, ipsilateral lung dose and heart dose were better for DIBH-VMAT compared to DIBH-3DCRT. However, contralateral lung and breast volumes exposed to low doses were increased with DIBH-VMAT.

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images (의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발)

  • Oh, Wang-Kyun
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.433-441
    • /
    • 2017
  • The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

Mechanical Properties of Paper Sludge-Polypropylene Composites (제지 슬러지-폴리프로필렌수지 복합재의 기계적 성질)

  • Lee, Phil-Woo;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.51-62
    • /
    • 1999
  • The objective of this research is to develop paper sludge reinforced thermoplastic composites which incorporate the advantages of each component materials. The effects of paper sludge content(0, 10, 20, 30, 40----), mesh size(20~40, 60~80, less than 100mesh), and coupling agent(Epolene E-43 and Epolene G-3003) on the mechanical properties of paper sludge-polypropylene composites were investigated. Composite density increased with an increase in the paper sludge content. When paper sludge is incorporated into a polypropylene matrix, the flexural properties of the composite increase significantly with an increase in the paper sludge mixing ratio. Especially, flexural modulus was improved with increasing paper sludge content. The flexural strength of composites was improved, but flexural modulus reduced somewhat with decreasing paper sludge particle size. The flexural properties of paper sludge-polypropylene composites were improved by using coupling agents to enhance the bonding between reinforcing filler and matrix. Use of the epolene E-43 and G-3003 resulted in considerable improvement in the flexural strength over control specimens. The flexural strength of the G-3003 composite system is higher than that of the E-43 system. Generally, izod notched impact strength of paper sludge-polypropylene composite decreased slightly, whereas izod unnotched impact strength decreased significantly with increasing paper sludge contents. There was no effects of paper sludge particle size on impact strength of paper sludge-polypropylene composites. And izod unnotched impact strength of epolene E-43 composite system sharply decreased but that of G-3003 composite system was no tendency with increasing additive content.

  • PDF

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.

A Study for Comparison of Geometric Characteristics on Forearms for Improvement of Convinience in Splint Manufacturing with 3D Printing Technology (3D 프린팅 기술을 적용한 스플린트의 제작 용이성 향상을 위한 아래팔 기하 정보 비교에 관한 연구)

  • Chang, Ji Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.475-481
    • /
    • 2019
  • A splint is one of assisting devices for the disabled with hemiplegia or contracture and is manually made by an experienced expert. Heated thermoplastic materials are continuously fitted to the affected part. This traditional method has a possible risk of low-temperature burn, quality variance of the splint due to the proficiency of maker. etc. While various approaches has been made using 3D printing technology in order to redeem those disadvantages, they still carry high cost issues with 3D scanners or accuracy issues with manual measurement. This research begins with symmetrical characteristics of human body and focuses on the preliminary study for the possibility of splint manufacturing with 3D printing technology based on geometric characteristics of unaffected arm. 3D right and left forearm models of healthy male adults were created by photogrammetry software and a series of digital images in order to measure the circumference and cross-sectional area of the forearm models at every 20mm from the elbow. The circumference and cross-sectional area showed tolerable levels of differences between both sides within subjects; The circumference and cross-sectional area showed very strong correlations between both sides within subjects. From these findings, the possibility of splint manufacturing with 3D printing technology could be confirmed based on the geometric characteristics of unaffected side.

Relations between Physical Parameters and Improvement of Mechanical Properties in Jute Fiber Green Composites by Maleic Anhydride Coupler (Jute fiber Green Composite의 커플링제에 의한 물리적 인자의 변화와 기계적 특성 향상)

  • Lee, Jung-H.;Byun, Joon-H.;Kim, Byung-S.;Park, Joung-M.;Hwang, Byung-S.
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.23-31
    • /
    • 2007
  • In order to improve the mechanical properties of jute fiber/polypropylene(PP) composites, the property change with the addition of a coupling agent, maleic anhydride polypropylene(MAPP) was examined experimentally. The maleated coupler acts as an intermediate to chemically connect the polar nature of the fiber and non-polar nature of the polyolefin polymer resin. Furthermore, the decrease in viscosity of the resin which results from the melting point reduction by the MAPP, leads to an increase of contact area with the fiber interface. We discussed the improvement of the PP composite blend of the maleated coupler with the 80mm jute long fiber mat in conjunction with the change of physical parameters in the thermoplastic resin. We confirmed the extent of contribution to the mechanical physical enhancement by using the following parameters: melting flow index(MI) and viscosity, contact angle, thickness of the composite, interfacial shear strength and morphology observation etc. Especially it was observed that the MI and viscosity, MAPP mixture had a very strong relationship with the tensile and flexural strength and modulus, and interfacial shear strength(IFSS).