• Title/Summary/Keyword: Thermophilic Phase

Search Result 31, Processing Time 0.033 seconds

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

Isolation and Characterization of Thermophilic Bacillus licheniformis YJ09 from Spent Mushroom (Pleurotus ostreatus) Substrates (느타리 수확후배지로부터 분리된 고온성 Bacillus licheniformis YJ09의 특성)

  • Kim, Hye Soo;Kim, Chul Hwan;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.244-248
    • /
    • 2016
  • In order to isolate thermophilic bacteria with high activity of CMCase and xylanase, spent mushroom substrates was collected from an oyster mushroom cultivation farm in Jinju, Gyeongnam, Korea. Among the isolates, one strain designated as YJ09 was selected by agar diffusion method. The isolate YJ09 was identified as a member of Bacillus licheniformis based on biochemical characteristics using Bacillus ID kit and MicroLog system. Comparative 16S rDNA sequence analysis showed that isolate YJ09 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus licheniformis with sequence similarity of 98.9%. Based on its physiological properties, biochemical characteristics and phylogenetic distinctiveness, the isolate YJ09 was classified as Bacillus licheniformis. The CMCase and xylanase activity of B. licheniformis YJ09 was slightly increased corresponding to the bacterial population from exponential phase to stationary phase in the growth curve of B. licheniformis YJ09.

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku;Nonaka, Jun;Otawa, Kenichi;Kitazume, Osamu;Asano, Ryoki;Sasaki, Takako;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

Characteristics of the Egg White Lysozymes from Ogol Fowl and Fowl for the Lysis of an Alkalophilic and Thermophilic Bacillus sp. TA-11 (호알칼리성, 고온성 Bacillus sp. TA-11에 대한 오골계 난백 Lysozyme의 용균특성)

  • 이성훈;조창호;안용근;이종수
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.447-451
    • /
    • 1996
  • Lytic activities of the egg white lysozyme from Korea-native Ogol fowl against the alkalophilic and thermophilic Bacillus sp. TA-11 were investigated and compared. Lytic activity of the Ogol fowl lysozyme for Bacillus sp. TA-11 was the highest for the cell of post-logarithm phase and optimum concentration of the lysozyme was 0.25%, Optimum reaction pH and temperature were 4.5 and 35$^{\circ}C$, respectively. Lytic activity of egg white lysozyme from fowl for Bacillus sp. TA-11 was the highest for the cell of stationary phase and optimum concentration of the lysozyme was 0.5%. Optimum reaction pH and temperature were 5.5 and 4$0^{\circ}C$, respectively.

  • PDF

Automation of Solid-state Bioreactor for Oyster Mushroom Composting

  • Lee, Ho-Yong;Kim, Won-Rok;Min, Bong-Hee
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.228-232
    • /
    • 2002
  • This study focused on the production of high quality compost for the growth of aero-thermophilic fungi, which has a promoting effect on the growth rate and production of oyster mushrooms. The automated solid-state bioreactor system was designed on the basis of a Three-Phase-One system, which controls the serial steps of prewetting, pasteurization and fermentation processes. High numbers of thermophilic fungi and bacteria were recovered from the mushroom composts prepared by this solid-state bioreactor. The rates of composting process were depended on physical as well as chemical factors. Among these factors, the parameters of moisture content and temperature were found to be particularly important. In our automated system, constant levels of moisture content, temperature and ventilation via mixing were provided by a centralized control apparatus including PLC, water tank and water jacket systems. These features induced higher microbiological activity of aero-thermophiles.

Bacterial Community Dynamics during Composting of Food Wastes (음식물 쓰레기 퇴비화 과정에 따른 세균군집 구조의 변화)

  • Shin, Ji-Hye;Lee, Jin-Woo;Nam, Ji-Hyun;Park, Se-Yong;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • Composting is a biological process converting solid organic waste into valuable materials such as fertilizer. The change of bacterial populations in a composting reactor of food waste was investigated for 2 months. Based on shifts in temperature profile, the composting process could be divided into the first phase ($2^{\circ}C\sim55^{\circ}C$), the second phase ($55^{\circ}C\sim97^{\circ}C$), and the third phase ($50^{\circ}C\sim89^{\circ}C$). The number of total bacteria was $1.66\times10^{11}$ cell/g, $0.29\times10^{11}$ cell/g, and $0.28\times10^{11}$ cell/g in the first, second, and third stages, respectively. The proportions of thermophiles increased from 33% to 89% in the second stage. T-RFLP analysis and nucleotide sequencing of 16S rRNA gene demonstrated that the change of bacterial community structure was coupled with shifts in composting stages. The structure of bacterial community in the ultra-thermophilic second stage reflected that of seeding starter. The major decomposers driving the ultra-thermophilic composting were identified as phylotypes related to Bacillus and Pseudomonas.

Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity

  • Zhang, Dongdong;Wang, Yi;Zhang, Chunfang;Zheng, Dan;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.305-313
    • /
    • 2018
  • A microbial consortium, TMC7, was enriched for the degradation of natural lignocellulosic materials under high temperature. TMC7 degraded 79.7% of rice straw during 15 days of incubation at $65^{\circ}C$. Extracellular xylanase was effectively secreted and hemicellulose was mainly degraded in the early stage (first 3 days), whereas primary decomposition of cellulose was observed as of day 3. The optimal temperature and initial pH for extracellular xylanase activity and lignocellulose degradation were $65^{\circ}C$ and between 7.0 and 9.0, respectively. Extracellular xylanase activity was maintained above 80% and 85% over a wide range of temperature ($50-75^{\circ}C$) and pH values (6.0-11.0), respectively. Clostridium likely had the largest contribution to lignocellulose conversion in TMC7 initially, and Geobacillus, Aeribacillus, and Thermoanaerobacterium might have also been involved in the later phase. These results demonstrate the potential practical application of TMC7 for lignocellulosic biomass utilization in the biotechnological industry under hot and alkaline conditions.

Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature (연속 회분식 고온 혐기성 공정의 운전특성 연구)

  • Lee, Jong Hoon;Chung, Tai Hak;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF