• 제목/요약/키워드: Thermometry

검색결과 67건 처리시간 0.021초

원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석 (Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle)

  • 조영민;임유진;염은섭
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.55-62
    • /
    • 2023
  • The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

대형 디젤 엔진에서 JP-8 과 디젤 적용 시의 배기 배출물 특성에 대한 이해 (Understanding Pollutant Emission in a Heavy-Duty Diesel Engine with JP-8 and Diesel)

  • 이진우;배충식
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1375-1381
    • /
    • 2011
  • 커먼레일 분사 시스템이 장착된 대형 단기통 가시화 엔진에서 디젤과 JP-8 의 연소 및 배기 특성을 분석하였다. 두 연료 적용 시, 배기 배출 경향을 분석하기 위해 직접 화염가시화와 이색법을 적용하였다. 연소 과정은 직접 화염 가시화로부터 화염 강도 분석을 통해 이루어 졌다. 이색법 결과는 화염 온도 및 KL 값을 도출하여 분석을 하였다. 직접 화염 가시화 결과, JP-8 연소 시, 점화 지연 기간이 길며, 디젤 연소에 비해 화염이 빠르게 소멸되는 것을 확인하였다. 화염 강도 분석을 통해 디젤 연소의 경우, 연소 전 기간에 걸쳐 높은 화염 강도 수준을 유지하며 화염 지속 기간이 긴 것을 알 수 있었다. 이색법 결과를 통해, JP-8 연소의 경우, 국부적으로 고온의 화염 면이 더 많이 분포하는 것을 확인하였으며, 이는 $NO_x$가 더 많이 배출된 경향을 설명해준다. 또한 KL 치 분석 결과, JP-8 연소 시 낮은 수준의 KL 값이 더 고르게 분포하는 것을 알 수 있었으며, 이는 JP-8 연소 시 스모크 가 덜 배출된 결과를 뒷받침 해준다.

Metal-Insulator-Metal 터널접합의 산탄잡음을 이용한 일차 온도계 구현 (Realization of Primary Thermometer from Electrical Shot Noise in a Metal-Insulator-Metal Tunnel Junction)

  • 박정환;;최정숙;김정구;류상완;송운;정연욱
    • Progress in Superconductivity
    • /
    • 제11권2호
    • /
    • pp.96-99
    • /
    • 2010
  • We measured electrical shot noise in a metal-insulator-metal tunnel junction, which was made by using electron-beam lithography and double-angle evaporation technique. Since the dependence of the shot noise on bias voltage and temperature is theoretically well known, we can determine the temperature of the junction by measuring the noise as the voltage across the junction is changed. A cryogenic low noise amplifier was used to amplify the noise signal in the frequency range of 600-800 MHz, which enabled fast measurement of noise signal and thus temperature. With further study, this method could be useful for primary thermometry in cryogenic temperatures.

박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성 (Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate)

  • 김동욱;정재훈;서현덕;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

In vivo verification of regional hyperthermia in the liver

  • Noh, Jae Myoung;Kim, Hye Young;Park, Hee Chul;Lee, So Hyang;Kim, Young-Sun;Hong, Saet-Byul;Park, Ji Hyun;Jung, Sang Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • 제32권4호
    • /
    • pp.256-261
    • /
    • 2014
  • Purpose: We performed invasive thermometry to verify the elevation of local temperature in the liver during hyperthermia. Materials and Methods: Three 40-kg pigs were used for the experiments. Under general anesthesia with ultrasonography guidance, two glass fiber-optic sensors were placed in the liver, and one was placed in the peritoneal cavity in front of the liver. Another sensor was placed on the skin surface to assess superficial cooling. Six sessions of hyperthermia were delivered using the Celsius TCS electro-hyperthermia system. The energy delivered was increased from 240 kJ to 507 kJ during the 60-minute sessions. The inter-session cooling periods were at least 30 minutes. The temperature was recorded every 5 minutes by the four sensors during hyperthermia, and the increased temperatures recorded during the consecutive sessions were analyzed. Results: As the animals were anesthetized, the baseline temperature at the start of each session decreased by $1.3^{\circ}C$ to $2.8^{\circ}C$ (median, $2.1^{\circ}C$). The mean increases in temperature measured by the intrahepatic sensors were $2.42^{\circ}C$ (95% confidence interval [CI], 1.70-3.13) and $2.67^{\circ}C$ (95% CI, 2.05-3.28) during the fifth and sixth sessions, respectively. The corresponding values for the intraperitoneal sensor were $2.10^{\circ}C$ (95% CI, 0.71-3.49) and $2.87^{\circ}C$ (1.13-4.43), respectively. Conversely, the skin temperature was not increased but rather decreased according to application of the cooling system. Conclusion: We observed mean $2.67^{\circ}C$ and $2.87^{\circ}C$ increases in temperature at the liver and peritoneal cavity, respectively, during hyperthermia. In vivo real-time thermometry is useful for directly measuring internal temperature during hyperthermia.