• Title/Summary/Keyword: Thermomechanical properties

Search Result 171, Processing Time 0.027 seconds

Effect of Thermomechanical Process on Mechanical Property and Microstructure of 9Cr-1Mo Steel (열간가공이 9Cr-1Mo강의 기계적 성질과 미세조직에 미치는 영향)

  • Kim, Jun-Hwan;Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Na, Kwang-Su;Kim, Seong-Ju
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.621-628
    • /
    • 2009
  • Thermomechanical processes were carried out to evaluate their effects on the mechanical and the microstructural property of a ferritic-martensitic steel. Modified 9Cr-1Mo steels were hot-rolled at a temperature of either $780^{\circ}C$ or $850^{\circ}C$ after normalizing at $1050^{\circ}C$ and then were air-cooled. Continuous annealing at $850^{\circ}C$ for 2 hours immediately after the hot rolling was also performed and they were compared to the specimens without thermomechanical process. The result showed that there were little differences between the hot rolled specimens in terms of the precipitation density and size. However, V content inside the MX precipitates increased in the case of the specimen rolled at $850^{\circ}C$. The application of the continuous annealing induced coarsening of the Nb-rich MX precipitation as well as an increase in the amount of V-rich MX precipitation, which is expected to enhance high temperature mechanical properties of the ferritic-martensitic steel.

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Adsorption Behavior of Cationic Starches onto Deinked Pulp and Thermomechnical Pulp (탈묵펄프와 열기계펄프에 대한 양성전분 흡착 거동)

  • 허동명;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 1999
  • Although many researches have been made on the adsorption of cationic starches onto chemical pulp fibers, only limited studies have been reported for deinked pulp(DIP) and thermomechanical pulpI(TMP). In this experiment, the adsorption behavior of the cationic starches onto DIP and TMP fibers investigated. Almost complete adsorption of cationic starches onto the pulp fibers were observed when the addition rate of starch was low. Adsorption ratio decreased abruptly when 3.5% and 4.0% of cationic starches were adsorbed onto deinked pulp and thermomechanical pulp, respectively. Adsorption of cationic starches increased as the degree of substitution decreased and as the pH of the pulp slurry increased. TMP fibers adsorbed more cationic starches than DIP because of its greater charge density, and this led to greater improvement in strength properties for the TMP sheets.

  • PDF

DECREASING CATIONIC DEMAND OF PEROXIDE-BLEACHED THERMOMECHANICAL PULP WITH PECTINASE ENZYME INCREASES FINES AND FILER RETENTION

  • Ian Reid;Michelle Ricard
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.84-89
    • /
    • 1999
  • Treatment with the enzyme pectinase has been reported to lower the cationic demand of thermomechanical pulp(TMP) bleached with alkaline peroxide in the laboratory. We have extended this discovery to bleached TMP produced industrially, and shown that commercial enzyme preparations can treat pulp within 15 minutes at the at the temperature and pH values prevalent in paper mills. About half of the cationic demand in the bleached pulp can be destroyed by pectinase. Dynamic drainage jar experiments show that the enzyme treatment improves the effectiveness of several cationic polymers to increase retention in the absence of retention aids or with non-ionic polymers, and does not damage the strength properties of the pulp. Pectinase could be easily incorporated into paper machine stock preparation systems to lower the charges of cationic retention aids needed in furnishes containing peroxide-bleached mechanical pulp.

Utilization of Kenaf Cultivated in Korea (II) - Physical properties of kenaf TMP and KP - (국내산 Kenaf 이용에 관한 연구 (제2보) - Kenaf TMP와 KP의 물리적 성질 -)

  • Lee, Myoung-Ku;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.45-52
    • /
    • 2007
  • Whole, bast and core fibers of kenaf cultivar Tainung-2 were pulped under different pulping methods, thermomechanical and kraft pulping methods. The physical and optical properties of kenaf TMP(thermomechanical pulp) and KP(kraft pulp) handsheets were investigated and the results from the study are summarized as follows: Yields of TMP and KP were $77{\sim}87%\;and\;43{\sim}52%$, respectively. There was no significant change in apparent density between kenaf KP and USKP(unbleached softwood kraft pulp) but TMP showed a little lower apparent density. Bast pulp had the lowest apparent density regardless of pulping methods. Tensile strength of kenaf KP was higher than that of TMP but similar to that of USKP. Both TMP and KP handsheets of bast fraction showed the highest tear strengths among whole, bast, and core fractions. Core fraction showed the lowest tear strengths under different pulping methods. In general burst strength of kenaf pulp under different pulping methods was lower than that of USKP, and kenaf pulp had better stiffness than USKP. Brightness of kenaf KP and TMP was higher than that of USKP. There was no significant variation in opacity between kenaf pulp and USKP even though kenaf pulp showed a little lower opacity. The main difference in paper quality between the core fiber and bast fiber is derived from the fact that bast fiber is long and thin, whereas core fiber is short and thick.

Improvement of Mechanical Properities in Al-Cu-Li-Ag-Mg-Zr Alloys by Thermomechanical Treatement (가공열처리에 의한 고강도 Al-Cu-Li-Ag-Mg-Zr 합금의 기계적 성질 개선)

  • Yu, C.H.;Namkung, I.;Lee, O.Y.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 1992
  • This study is aimed to investigate the effect of various thermomechanical treatments($T_6$, $T_8$ and ITMT) on the microstructure and mechanical properties of an Al-Cu-Li-Ag-Mg-Zr alloy (Weldalite 049) which has been known to strong natural aging response, good weldablity and high strength in $T_6$ sand $T_8$ temper. This experiment was performed by means of differential scaning calorimetry, tensile test, optical and transmission electron microscopy. The tensile strength in the peak aged condition shows 620, 650 MPa in $T_6$ and $T_8$(40% cold work), respectively. Also, The tensile strength is increased with cold working in $T_8$ but decreased at 60% cold working. However, the tensile strength of the intermediate thermomechanical treated speciman(ITMT) is lower than that of $T_6$ temper about 20% but the elongation is higher than two times. It might be predicted that the ITMT is effective processing to improve the toughness of this alloy. In $T_6$, $T_8$ and ITMT, the major strengthening phase is $T_1(Al_2CuLi)$ phases. and the fine $T_1$ phase which are homogeneously precipited in matrix was observed much more in $T_8$ than $T_6$ and ITMT.

  • PDF

Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy (가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화)

  • Lee, Doh-Jae;Hwang, Ju-Young;Lee, Kyung-Ku;Yoon, Kye-Lim;Jun, Choong-Geug
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.

The Effect of Thermomechanical Treatment on the High Temperature Properties in Fe-Ni-C Alloy (Fe-Ni-C합금의 고온물성에 미치는 가공열처리의 영향)

  • Ahn, H.K.;Lee, K.B.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.75-81
    • /
    • 1998
  • The effect of thermomechanical treatment on thermal expantion and melting point of Fe-30%Ni-0.35%C alloy was investigated. The dimention changes of the ausformed martensite and the marformed martensite were decreased with increasing deformation degree in the range of $25{\sim}350^{\circ}C$ prior to reverse transformation but became larger in the range of $500{\sim}800^{\circ}C$ after the reverse transformation. The dimension change and the thermal expansion coefficient were reduced in the order of the deformed austenite, the marformed martensite and the ausformed martensite in the range of $25{\sim}800^{\circ}C$. Therefore, the ausforming treatment is more effective than the marforming treatment in improving the heat-resistance. The melting points of the deformed austenite, the ausformed martensite and the marformed martensite were lowered as either the heating rate or the degree of deformation was increased.

  • PDF