• Title/Summary/Keyword: Thermomechanical properties

Search Result 171, Processing Time 0.035 seconds

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

The Effect of Thermomechanical Treatment on the Transformation Characteristics and Mechanical Properties in a Cu-Al-Ni-Ti-Mn Alloy (Cu-Al-Ni-Ti-Mn 합금의 변태특성 및 기계적 성질에 미치는 가공열처리의 영향)

  • Kim, C.D.;Lee, Y.S.;Yang, G.S.;Jang, W.Y.;Kang, J.W.;Baek, S.N.;Gwak, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.145-156
    • /
    • 1999
  • The distribution of the second phase, the change of transformation temperature and mechanical properties with thermomechanical treatment conditions were investigated by metallography, calorimetry, EDS, tensile test and fractography in a Cu-Al-Ni-Ti-Mn alloy. The cast structure revealed Ti-rich precipitates($X_L$ phase) between dendrite arms, which have been identified as $(Cu,Ni)_2TiAl$ intermetallic compounds. By homogenizing above $900^{\circ}C$, the $X_L$ phase was melted in the matrix, while the Xs phase was precipitated in matrix and the volume fraction of it was increased. When hot-rolled specimen was betatized below $750^{\circ}C$, recrystallization could not be observed. However, the specimen betatized above $800^{\circ}C$ was recrystallized and the grain size was about $50{\mu}m$, while Xs phase was precipitated in matrix. With raising betatizing temperature, $M_s$ and $A_s$ temperatures were fallen and transformation hysteresis became larger. The strain of the specimen betatized at $800^{\circ}C$ was 8.2% as maximum value. The maximum shape recovery rate could be obtained in the specimen betatized at $800^{\circ}C$ but it was decreased due to the presence of Xs phase with increasing betatizing temperature.

  • PDF

Thermomechanical Properties and Shape Memory Effect of Chemically Crosslinked EPDM (Nordel(R) IP) (화학적으로 가교된 EPDM (Nordel(R) IP)의 열적기계적 특성 및 형상기억거동)

  • Chang, Young-Wook;Han, Jung-Eun;Kang, Shin-Choon;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.217-223
    • /
    • 2007
  • Thermomechanical and shape memory properties of dicumyl peroxide(DCP) cured semicrystalline EPDM($Nordel^{(R)}$ IP) were investigated. From gel content analysis, it can be seen that Nordel can be crosslinked by small amount of DCP and the degree of crosslinking increased with the increase of DCP content. DSC analysis revealed that the melting temperature and degree of crystallinity of the crosslinked rubber decreased with the increase of DCP. Tensile test showed that tensile modulus increased and elongation at break of the rubber decreased with an increase in the degree of cross linking. The chemically crosslinked semi-crystalline EPDM exhibited excellent shape memory behavior, i.e. the sample was easily deformed to have an arbitrary secondary shape above its melting temperature and was fixed well in its deformed state when it is cooled, and then the fixed shape was recovered to its original shape very fast upon heating above its melting temperature.

Study on the Thermomechanical Properties of Epoxy-Silica Nanocomposites by FTIR Molecular Structure Analyses (FTIR 분자구조 해석을 통한 에폭시-실리카 나노복합소재의 열기계적 물성 연구)

  • Jang, SeoHyun;Han, Yusu;Hwang, DoSoon;Jung, Juwon;Kim, YeongKook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • This paper analyzed the effects of the concentration of nano-silica particles contained in epoxy resin on the thermomechanical properties of the composite materials. The 12nm sized nanoparticles were mixed with epoxy polymer by 5 different weight ratios for the test samples. The glass transition temperature, stress relaxation, and thermal expansion behaviors were measured using dymanic mechanical analyzer (DMA) and thermomechanical analyzer (TMA). It was shown that the nano particle mixing ratios had significant influences on the viscoelastic behaviors of the materials. As the content of the silica particles was increased, the elastic modulus was also increased, while the glass transition temperatures were decreased. Fourier Transform Infrared Spectroscopy (FTIR) results played an important role in determining the causes of the property changes by the filler contents in terms of the molecular structures, enabling the interpretations on the material behaviors based on the chemical structure changes.

Influence of Functionalization on Physicochemical Properties of Multi-walled Carbon Nanotubes/Epoxy Matrix Nanocomposites

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.124-128
    • /
    • 2009
  • In this study, the effect of multi-step purification or functionalization on physicochemical properties of multi-walled carbon nanotubes (MWNTs)/epoxy (EP) nanocomposites was investigated. The nanocomposites containing multi-step purified MWNTs showed a stronger influence on $T_g$ and increased in mechanical properties in comparison to nanocomposites containing the same amount of only purified MWNTs. Consequently, the multi-step purification of MWNTs led to an improvement of thermomechanical properties of nanocomposites, resulting from improving the intermolecular interaction of MWNTs in epoxy matrix resins.

Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis (열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성)

  • Seo, Ahn Na;Lee, Jong-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.629-636
    • /
    • 2012
  • Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites (홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Optimization Technology of Thermomechanical Pulp Made from Pinus densiflora (I) - Effect of Temperature and NaOH at Presteaming and Refining - (국내산 소나무로 제조되는 열기계펄프 제조 기술 최적화 연구 (1) - 목재 칩의 전처리와 리파이닝 시 온도와 NaOH 처리의 효과 -)

  • Nam, Hyegeong;Kim, Chul-Hwan;Lee, Ji-Young;Park, Hyunghun;Kwon, Sol;Cho, Hu-Seung;Lee, Gyeong-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Thermomechanical pulping process uses large amounts of energy, mostly electricity to run electrical facilities. Thermomechanical pulp (TMP) made from Pinus densiflora also has a big drawback that refining consumes 90 per cent of the total energy used in TMP process. This study explored to draw up a way to save refining energy through different thermal treatment at the stages of presteaming and refining. Presteaming temperature was $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$. After presteaming at each temperature, refining was carried out at $100^{\circ}C$, $120^{\circ}C$, and $140^{\circ}C$ respectively. In a presteaming stage, steaming temperature over $120^{\circ}C$ greatly contributed to the decrease of refining energy leading to earlier attainment of a target freeness, irrespective of refining temperature. In addition, NaOH treatment with presteaming enhanced better development of fiber properties during refining than presteaming without NaOH. High temperature refining at $140^{\circ}C$ produced a high strength paper, and wood chips treated by alkali responded better to refining than at over $120^{\circ}C$. Improved softening effect on wood chips led to the decrease in shives contents but it gave no effect on pitch contents of TMP.