• Title/Summary/Keyword: Thermomechanical behavior

Search Result 96, Processing Time 0.028 seconds

High-Temperature Deformation Behavior of MnS in 1215MS Steel

  • Huang, Fei-Ya;Su, Yen-Hao Frank;Kuo, Jui-Chao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1333-1345
    • /
    • 2018
  • The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were (${\bar{1}}0{\bar{1}}$)[${\bar{1}}01$], ($10{\bar{1}}$)[101], (011)[$01{\bar{1}}$], and (110)[$1{\bar{1}}0$]. Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

Chemical and Thermal Characterizations of Electron Beam Irradiated Jute Fibers (전자빔 조사된 황마섬유의 화학적 및 열적 특성분석)

  • Ji, Sang Gyu;Cho, Donghwan;Lee, Byung Cheol
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.162-167
    • /
    • 2010
  • In the present work, the effect of electron beam irradiation on the chemical and thermal characteristics of cellulose-based jute fibers was explored by means of chemical analysis, electron spin resonance analysis, ATR-FTIR spectroscopy, thermogravimetric analysis and thermomechanical analysis. Jute fiber bundles were uniformly irradiated in the range of 2~100 kGy by a continuous method using a conveyor cartin an electron beam tunnel. Electron beam treatment, which is a physical approach to change the surfaces, more or less changed the chemical composition of jute fibers. It was also found that the radicals on the jute fibers can be increasingly formed with increasing electron beam intensity. However, the electron beam irradiation did not change significantly the chemical functional groups existing on the jute fiber surfaces. The electron beam irradiation influenced the thermal stability and thermal shrinkage/expansion behavior and the behavior depended on the electron beam intensity.

A comparison study on coupled thermal, hydraulic, and mechanical interactions associated with an underground radwaste repository within a faulted granitic rock mass (화강암반내 단층지역에 위한 지하 방사성폐기물 처분장 인접지역에서의 열-수리-역학적 연성거동 비교 연구)

  • 김진웅;배대석;강철형
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.255-267
    • /
    • 2001
  • A comparison study is performed to understand the coupling behavior of the thermal, hydraulic, and mechanical interactions in the vicinity of an underground radwaste repository, assumed to be located at a depth of 500 m, within a granitic rock mass with a 58$^{\circ}$ dipping fault passing through the roof-wall intersection of the repository cavern. The two dimensional universal distinct element code, UDEC is used for the analysis. The model includes a granitic rock meas, a canister with PWR spent fuels surrounded by the compacted bentonite inside a deposition hole, and the mixed bentonite backfilled in the rest of the space within a repository cavern. The coupling behavior of hydromechanical, thermomechanical, and thermohydromechanical interaction has been studied and compared. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. A steady state flow algorithm is used for the hydraulic analysis.

  • PDF

Effect of Oxidation on Hot Ductility Behavior of Plain Carbon Steel (탄소강의 열간연성 거동에 미치는 산화의 영향)

  • Park, Tae Eun;Lee, Un Hae;Sohn, Kwang Suk;Lee, Sung Keun;Kim, In Soo;Yim, Chang Hee;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • The effects of oxidation behavior on the hot ductility of plain carbon steels were investigated at various temperatures in order to simulate the continuous casting process more precisely, in which the process undergoes in air atmosphere rather than Ar atmosphere. The high temperature oxidation behavior and scale morphology of the carbon steels exposed to the air and Ar atmosphere at various temperatures were also investigated in order to assess the mechanism of the RA value decreasing in an air atmosphere. The RA values obtained from the air atmosphere were marked below 45% by the test temperature, except for over 1000${^{\circ}C}$, with the RA values remaining in low values in both the low and high temperature region, at which the RA values generally recovered in the Ar atmosphere. The surface roughness of the specimen was developed by external and internal oxidation when the specimen was deformed in an air atmosphere at high temperature, with the result being the stress concentrated at the roughness of the specimen surface, resulting in low RA values. The hot ductility in the air atmosphere was found to be likely controlled by the oxidation rate instead of the microstructures corresponding to test temperatures.

The Strength Evaluation of TiNi/A16061 Composite by Using Finite Element Method (유한요소법을 이용한 TiNi/A16061 형상기억 복합재료의 강도평가)

  • Park, Yeong-Cheol;Lee, Gyu-Chang;Park, Dong-Seong;Lee, Dong-Hwa;Dong Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.72-78
    • /
    • 2002
  • Thermomechanical behavior and mechanical properties of A16061 matrix composite with shape memory alloy(SMA) fiber are studied by using fnite element analysis(FEA). The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when healed after being prestrained. In this paper, an analytical model is assumed two dimentional axisymetric model of one fiber and around the matrix. To evaluate the strength of composite usig FEM, the concept of smart composite was simulated on computer. The Shape memory effect(SME) simulation is very difficult using FEM because of the nonlinear analysis and the elastic plastic analysis. Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363K). The analysis is compare the finite element analysis result with the test result for the analysis validity.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

1-D Microstructure Evolution of Electrostatic Sprayed Thermosetting Phenol-formaldehyde Resin Coating (정전분무법으로 제작된 열경화성 Phenol-formaldehyde resin 코팅층의 1차원적 미세구조 형성 메카니즘)

  • Kim, Baek Hyun;Bae, Hyun Jeong;Goh, Yumin;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.472-477
    • /
    • 2016
  • Microstructure evolutions of thermosetting resin coating layers fabricated by electrostatic spray deposition (ESD) at various processing conditions were investigated. Two different typical polymer systems, a thermosetting phenol-formaldehyde resin and a thermoplastic polyvinylpyrrolidone (PVP), were employed for a comparative study. Precursor solutions of the phenol-formaldehyde resin and of the PVP were electro-sprayed on heated silicon substrates. Fundamental differences in the thermomechanical properties of the polymers resulted in distinct ways of microstructure evolution of the electro-sprayed polymer films. For the thermosetting polymer, phenol-formaldehyde resin, vertically aligned micro-rod structures developed when it was deposited by ESD under controlled processing conditions. Through extensive microstructure and thermal analyses, it was found that the vertically aligned micro-rod structures of phenol-formaldehyde resin were formed as a result of the rheological behavior of the thermosetting phenol-formaldehyde resin and the preferential landing phenomenon of the ESD method.

A Study on the Superplasticity of Zn-Al Alloy using Dynamic Materials Model (동적재료모델을 이용한 Zn-Al 합금의 초소성 변형거동 연구)

  • Jung, J.Y.;Ha, T.K.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • Superplastic deformation behavior of a Zn-0.3 wt.% Al was investigated. Grain sizes of $1{\mu}m$ and $10{\mu}m$ were obtained by a thermomechanical treatment. A series of load relaxation and tensile tests were conducted at various temperatures ranging from RT ($24^{\circ}C$) to $200^{\circ}C$. A large elongation of 1400% was obtained at room temperature in the specimens with the grain size of $1{\mu}m$. In the case of specimens with the grain size of $10{\mu}m$, relatively lower elongation at room temperature was obtained and, as the temperature increases above $100^{\circ}C$, a high elongation of about 400 % has been obtained at $200^{\circ}C$ under the strain rate of $2{\times}10^{-4}/s$. Dynamic materials model (DMM) has been employed to explain the contribution from GBS of Zn-Al alloy. Power dissipation efficiency for GBS was evaluated as above 0.4 and found to be very close to the unity as strain rate decreased and temperature increased, suggesting that GBS could be regarded as Newtonian viscous flow.

Superplasticity of Magnesium Alloys and SPF Applications (마그네슘합금의 초소성 특성과 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.