• Title/Summary/Keyword: Thermomechanical behavior

Search Result 96, Processing Time 0.029 seconds

Thermo-mechanical Analysis of Filp Chip PBGA Package Using $Moir\acute{e}$ Interferometry (모아레 간섭계를 이용한 Flip Chip PBGA 패키지의 온도변화에 대한 거동해석)

  • Kim, Do-Hyung;Choi, Yong-Seo;Joo, Jin-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1027-1032
    • /
    • 2003
  • Thermo-mechanical behavior of flip-chip plastic ball grid array (FC-PBGA) packages are characterized by high sensitive $Moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed for several temperatures. Deformation analysis of bending displacements of the packages and average strains in the solder balls for a single-sided package assembly and a double-sided package assembly are presented. The bending displacement of the double-sided package assembly is smaller than that of the single-sided one. The largest of effective strain occurred in the solder ball located at the edge of the chip and its magnitude of the double-sided package assembly is greater than that of single-sided one.

  • PDF

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

On the Contact Behavior Analysis and New Design of O-ring Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Young-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.121-122
    • /
    • 2002
  • This paper presents contact behavior of an Polyperfluoroalkoxyethylene(PTFE) ring seals by a non-linear finite element method using the thermomechanical analysis. PTFE elastomer was assumed as odgen model for numerical analysis in FEM commercial code because elastomer has nonlinear behaviour character. The shape effects are investigated for sealing performance of ring seal in boundary conditions which as gas pressure, groove temperature and various O-ring seal models. Also contact stress and equivalent total strain are investicated. An O-ring seals was modeled four shape which are circle, two sunflower and X. The highest contact stress occurs at sunflower-ring seal with groove deapth of 0.35mm. the equivalent total strain of sunflower-ring seal is lower than that of the others under low gas pressure condition but under gas pressure condition over 4Mpa, that of sunflower-ring seal is higher. The calculated FEM results shows that the Sunflower-ring seal with groove depth of 0.35mm has excellent performance compared with other seal models.

  • PDF

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

Thermomechanical Properties of $\beta$-Sialon Synthesized from Kaolin (카올린으로부터 합성한 $\beta$-Sialon의 열적.기계적 성질)

  • Lee, Hong-Lim;Lim, Hun-Jin;Kim, Shin;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.349-356
    • /
    • 1987
  • ${\beta}$-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350$^{\circ}C$ in N2-H2 atmosphere, using graphite as a reducing agent. The synthesized ${\beta}$-Sialon powder was pressurelessly sintered over 1450-1850$^{\circ}C$ in nitrogen atmosphere. The average particle size of ${\beta}$-Sialon powder was about 4.5$\mu\textrm{m}$. The relative density, M.O.R., fracture toughness and micro-hardness of ${\beta}$-Sialon ceramics sintered at 1800$^{\circ}C$ for 1 hour were 92%, 36 kpsi, 2.8MN/㎥/2 and 13.3 GN/㎡, respectively. The critical temperature difference (ΔT) in water quench thermal shock behavior showed about 375$^{\circ}C$ for the synthesized ${\beta}$-Sialon ceramics.

  • PDF

A Study on the Prediction and Control of Welding Deformation of the BRACKET TILT in Automotive Parts (I) - Application of FEA- (자동차 부품 BRACKET TILT의 용접변형 예측 미 제어에 관한 연구 (II) -유한요소법의 적용-)

  • 장경복;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.104-112
    • /
    • 1998
  • In the previous study, the countermeasure for welding deformation of bracket tilt is through up through experimental inspection for total process including welding process. For completeness of systematic examination of parts having sensitivity on welding deformation, the comparison and feedback between the result through simulation of welding process and experimental data is needed. In other words, it is necessary to control welding deformation that construct the prediction system for welding deformation through comparison and tuning with experimental data. In the present study, the application of FEA on welding process of bracket tilt with susceptibility to deformation is made and deformation behavior through change of welding sequence is focused on. It is used to improve the exactness of deformation analysis that three dimensional analysis for moving heat source, activated and deactivated bead element, and volume heat flux etc.

  • PDF

Characterization of superplastic material SPF8090 AI-Li with the variation of the strain rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성 재료의 물성 특성)

  • Lee, Ki-Seok;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.425-434
    • /
    • 1997
  • A superplastic material, aluminum-lithium alloy 8090, was examined with uniaxial tensile tests to investigate its thermomechanical behavior. The tests were carried out at the strain rate ranging from $2X10^4 to 1X10^2$ and at the temperature from 48$0^{\circ}C$ to 54$0^{\circ}C$. The experiments produced force-dis-placement curves which were converted to stress-strain curves. From the curves, the optimum conditions of superplastic forming were obtained by deteriming the strain rate sensitivety, the optimum strain rate, and the strength coefficient for various forming temperatures.

  • PDF

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

Evaluation of Thermal Deformation Model for BGA Packages Using Moire Interferometry

  • Joo, Jinwon;Cho, Seungmin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.230-239
    • /
    • 2004
  • A compact model approach of a network of spring elements for elastic loading is presented for the thermal deformation analysis of BGA package assembly. High-sensitivity moire interferometry is applied to evaluate and calibrated the model quantitatively. Two ball grid array (BGA) package assemblies are employed for moire experiments. For a package assembly with a small global bending, the spring model can predict the boundary conditions of the critical solder ball excellently well. For a package assembly with a large global bending, however, the relative displacements determined by spring model agree well with that by experiment after accounting for the rigid-body rotation. The shear strain results of the FEM with the input from the calibrated compact spring model agree reasonably well with the experimental data. The results imply that the combined approach of the compact spring model and the local FE analysis is an effective way to predict strains and stresses and to determine solder damage of the critical solder ball.