• Title/Summary/Keyword: Thermoluminescent dosimeter (TLD)

Search Result 40, Processing Time 0.022 seconds

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.239-247
    • /
    • 1974
  • A human phantom of polyethylene has been designed and sculptured for studying the effective radiation safety control. The phantom has the approximate size of the Korean adult and was sliced into thirty-five transverse slabs, 2.5 cm thick, The relative dose at the specified position was determined from the exposure that a TLD badge worn on the surface of the phantom body received from external ${\gamma}$-ray. The variation of the exposure as a function of depth in the phantom was measured for uncollimated ${\gamma}$-ray using TLD rods, and also isodose curves were obtained for the anatomical cross-section of the critical organs of the body. To simulate radiation exposure condition in the nuclear facility, measurements were made for given angles of incident ${\gamma}$-ray. The front to back attenuation factor for human phantom of thickness 20 cm was 0.439 for Cs$^{137}$ ${\gamma}$-ray which is in reasonable agreement with the published data.

  • PDF

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

Response of LiF Thermoluminescent Dosimeter to Gamma-Rays as a Cavity Detector (LiF 열형광선량계(熱螢光線量計)의 감마선(線)에 대한 공동검출기(空洞檢出器)로서의 감응(感應))

  • Ha, C.W.;Yook, C.C.;Jun, J.S.
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.10-14
    • /
    • 1976
  • Influence of the cavity size on the response of LiF TLD was theoretically investigated for a presumed system of spherical TLD cavity imbedded in a medium of polyethylene. Calculation of the response for different radii of the spherical cavity was carried out as a function of incident photon energy, applying recent cavity theory. The range of the radii covers 1.578 to 6.528 mm, while that of the incident photon energies extends from 0.02 to 3.0 MeV. As a results, the response of the LiF TLD imbedded in a medium as a cavity was found to be functions of its own size as wall as the incident photon energy.

  • PDF

Study of Acute Myelocytic Leukemia Patient Treatment That Used Total Skin Electron Beam (Total Skin Electron Beam을 이용한 급성 골수성 백혈병 환자 치료에 대한 연구)

  • Lee, Sang-Ryul;Kang, Min-Kyu;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.152-158
    • /
    • 2009
  • Total Skin Electron Beam Therapy (TSEBT) of linear accelerator has become use so as to be useful, 2~9 MeV of energy territories came to be used with mycosis fungoides and cutaneous lymphomas in the superficial lesion treatment which covers the major portion of the body. I treat a patient to Stanford technique in this study, and it is $60^{\circ}$ around the patients whom Stanford technique irradiated electronic beam to a linear accelerator in horizontal directions and there is a way a standard of TSEBT treat it to six located field (anterior, posterior, and four obliques) becoming. An each field does horizontally it and consist to beam of the two component which fitted the center to a suitable angle. a patient treats it to three dual field a day in order to make short treatment time. when a first day, we treat one dual field at anterior position and two dual field at posterior position. when the second day, treat one dual field at posterior position and two dual field at anterior position. Therefore, six dual field is finished in perfect periodic two days. we made cylindrical acrylic phantom, and I inserted a dosimeter film between phantom. in order to measure a dose distribution calculation before treat a patient, and a patient checked it in six field directions that got from a treatment. It is after that thermoluminescent dosimetry (TLD) as it uses Rando phantom and then measurement dose distribution in six field directions after attaching at chest, the right and left flank, a back after irradiation.

  • PDF

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

Effective dose of cone-beam computed tomography for orthodontic analysis in pediatric patient (소아환자에서 교정분석을 위한 콘빔CT 촬영시 유효선량에 관한 연구)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.53 no.8
    • /
    • pp.558-568
    • /
    • 2015
  • Objective: The objectives of this study were to measure pediatric organ and effective doses of cone-beam computed tomography (CBCT) for orthodontic analysis and to compare them to those of panoramic and lateral cephalometric radiography, the conventional radiography for orthodontic analysis. Materials and Methods: Alphard VEGA for CBCT, Planmeca Proline XC for panoramic radiography and Orthophos CD for cephalometric radiography were used for this study. Thermoluminescent dosimeter (TLD) chips were located at 24 anatomic sites of 10-year-old anthropomorphic phantom and exposed during CBCT (C-mode; $200{\times}179mm$ FOV), panoramic and lateral cephalometric radiographic procedures at the clinical exposure settings for 10-year-old patient. Pediatric organ and effective doses were measured and calculated using ICRP 2007 tissue weighting factors. Results: Effective doses of CBCT, panoramic radiography and lateral cephlometric radiography in pediatric clinical exposure settings were $292.5{\mu}Sv$, $19.3{\mu}Sv$, and $4.4{\mu}Sv$ respectively. The thyroid gland contributed most significantly to the effective dose in all the radiographic procedures. Conclusion: Effective dose of CBCT was about 12 times to conventional radiographic procedures for orthodontic analysis in pediatric patient. The use of CBCT for orthodontic analysis should be fully justified over conventional radiography and dose optimization to decrease thyroid dose is needed in pediatric patients.

Absorbed and effective dose from newly developed cone beam computed tomography in Korea (최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가)

  • Lee, Jong-Nyeong;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

Comparison of cone beam CT and conventional CT in absorbed and effective dose (Cone beam CT와 일반 CT의 흡수선량 및 유효선량 비교평가)

  • Kim, Sang-Yeon;Han, Jin-Woo;Park, In-Woo
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Purpose: This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Materials and Methods: Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Crane x 3+(Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Results: Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy 3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy 1, 0.70 mGy for Cranex 3+. Effective doses $(E_{2005draft)$ were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy 3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy 1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023mSv). Conclusion: Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  • PDF

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.