• Title/Summary/Keyword: Thermogravimetry analysis

Search Result 90, Processing Time 0.029 seconds

Free-Radical Polymerization and Copolymerization of N-Acetyl ${\alpha}$-Aminoacrylic Acid (N-Acetyl ${\alpha}$-aminoacrylic Acid의 자유라디칼 중합 및 혼성중합)

  • Il Hyun Park;Chong Kwnag Lee;Jae Ho Choi;Jung-Il Jin
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.235-246
    • /
    • 1982
  • The free radical polymerization and copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid were investigated. From the result of kinetic investigation of N-acetyl ${\alpha}$-aminoacrylic acid in DMF at $60^{\circ}C$, a rate equation of $R_p$ = $k_p[M]^{0.97}[I]^{0.59}$ was obtained. The overall activation energy for the polymerization was found to be 25.2 kcal/mole. Copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid with acrylic acid and styrene was carried out for the determination of monomer reactivity ratios. The monomer reactivity ratios for the monomer pairs determined at 70.0{\pm}0.1^{\circ}C$ using benzoyl peroxide as an initiator are; $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.49, $r_2$(acrylic acid) = 1.41, $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.44, $r_2$(styrene) = 0.91. The values of Alfrey-Price's Q and e parameters for N-acetyl ${\alpha}$-aminoacrylic acid were calculated to be 0.51 and 0.16 for the both systems. Differential thermal analysis and thermogravimetry showed that acrylic acid copolymers have poorer thermal stability as compared with the homopolymer of N-acetyl ${\alpha}$-aminoacrylic acid.

  • PDF

Synthesis and Properties of Hyperbranched Liquid Crystalline Polyesters by Direct Polycondensation (직접중축합법에 의한 하이퍼브랜치 액정 폴리에스터의 합성 및 성질)

  • Park, Jong-Ryul;Kim, Hye-Mi;Yoon, Doo-Soo;Sohn, Jeong Sun;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.237-244
    • /
    • 2017
  • Hyperbranched liquid crystalline polymers with azomesogenic and cholesteryl groups in their terminal positions were designed and synthesized by direct polycondensation reaction. The chemical structures and thermal and mesomorphic properties of the synthesized polymers were investigated by FT-IR, $^1H-NMR$, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and polarizing optical microscopy (POM). The inherent viscosities (${\eta}_{inh}$) of the polymers were measured to be between 0.30 and 0.50 dL/g in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane (25/40/35 = w/w/w). The degree of branching (DB) in these polymers ranged from 0.37 to 0.75; they, as amorphous polymer, showed glass transition temperatures ranging from 80 to $120^{\circ}C$; the polymers readily dissolved in most of the organic solvents used in the experiments. Only hyperbranched polymers with a cholesteryl group as their mesogenic group showed liquid crystalline phases.

Development of Packaging Materials for MA Packaging(1) (MA포장용 기능성 포장 소재개발에 관한 연구(1))

  • Park, Hyung-Woo;Park, Moo-Hyun;Kim, Hoon;Lee, Jae-Young;Yang, Han-Chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 1996
  • Various treaments such heating, acid tenting, acid healing, alkaline treating, acid+alkaline renting were attempted to investigate their effects on molar ratio, chemical composition, DTA and specific surface area(SSA) of natural zeolite poder. Molar ratio, Si to AI. of natural zeolite was 4.78, which represented high silica type. Composition of natural zeolite showed that $SiO_2$ was 66.34% $Al_2O_3$ was 13.89%, $Fe_2O_2$ was 1.55% X-ray diffraction showed that main component of natural zeolite was mordenite and clinoptliolite. Differential Thermal Analysis and Thermogravimetry curve of natural zeolite was showed to peak of endothermic peak at $80^{\circ}C$ and it means to the peak of dehydrate reaction, but recristalization was not formed below at $1,000^{\circ}C$. Weight loss during calcination was 16% at $1,000^{\circ}C$. Thermal treatments on SSA of natural zolite powder decreased from $75.2m^2/g\;to\;2.1m^2/g$. In contrast chemical treatments on SSA showed to increase to $300.2m^2/g$(1 N HCl treating), $54.9m^2/g$(1 N NaOH) and $90.9m^2/g$(HCl+NaOH)tudy, it could be proposed to employ acid tret method as packaging materisls for MA packaging.

  • PDF

Combustion Properties of Woods for Indoor Use (II) (실내 사용 목재의 연소 특성 분석 (II))

  • Seo, Hyun Jeong;Kang, Mee Ran;Son, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.478-485
    • /
    • 2015
  • The aim of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of domestic timbers. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test and thermogravimetry (TGA). Thermal decomposition temperatures of the specimens by TGA were recorded as $359.83^{\circ}C$ for White pine, $359.80^{\circ}C$ for Red-Leaved Hornbeam, $363.14^{\circ}C$ for Carolina poplar, $358.59^{\circ}C$ for Konara oak, and $362.11^{\circ}C$ Sargent cherry. Red-Leaved Hornbeam showed the highest value of heat release rate, but, Carolina poplar wood showed the lowest value. In case of the total heat release, Red-Leaved Hornbeam wood showed the highest value and Carolina poplar wood showed the lowest one. The gas analysis results showed that Sargent cherry wood had the lowest value of 0.021, and Konara oak had the highest at 0.031 in the $CO/CO_2$. The minimum value of mass reduction was recorded as 87.57% for Sargent cherry, but, on the other hand, it was 95.03% for Konara oak. There was a correlation between the gas generation of CO and $CO_2$, and combustion behavior of woods. These results are expected to be usful for providing a fundamental guideline with the fire safety of wood use in interior applications.

A Study on Soil Cementation and Calcite Precipitation with Clay as a Medium (점토를 매개체로 한 탄산칼슘 석출 및 흙의 고결에 관한 연구)

  • Park, Sung-Sik;Suh, Eun-Hee;Chae, Kyung-Hyeon;Jang, Sang Kyu;Kim, Jin-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.17-27
    • /
    • 2015
  • In this study, we tried to precipitate calcium carbonate with carbonate ions decomposed from urea by plant extract and calcium ions dissolved in water. The clay particles carry a net negative charge on their surfaces. Such clay mineral was additionally mixed as a medium to improve soil strength and durability with environmentally-friendly way. The $1^{st}$ solution (plant extracts and urea) and the $2^{nd}$ solution (calcium chloride and clay) were mixed together with clean Nakdong River sand. Then, this mixed soil was compacted into a small cylindrical specimen and then air cured for 7 days in laboratory. The molar concentration of urea and calcium chloride was tested for three different conditions, 1, 5, and 7 mol. Three different clay contents (0, 1, and 3% per total weight) were mixed with sand. For each specimen, a series of unconfined compression test, a durability test, SEM, EDX and XRD analyses were carried out to evaluate its cementation and structure. As the molar concentration of the solution and clay content increased, the unconfined compressive strength and durability increased. The results of SEM, EDX and XRD analyses showed that calcite was precipitated around clay mineral. The thermogravimetry analysis indicated that calcium carbonate precipitated about 1~2% per total weight of the sample.

Properties of Glass Melting Using Recycled Refused Coal Ore (선탄 경석 재활용 원료를 이용한 유리 용융 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.727-733
    • /
    • 2019
  • In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at $1,200{\sim}1,500^{\circ}C$ for 1 hr, and then annealed at $600^{\circ}C$ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than $1,300^{\circ}C$ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at $1,200^{\circ}C$, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at $1,300^{\circ}C$, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than $1,200^{\circ}C$ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.

Genesis and Mineralogical Characteristics of Acid Sulfate Soil in Gimhae Plain -II. Genesis and Distribution of the Soil Clay Minerals (김해평야(金海平野)에 분포(分布)한 특이산성토(特異酸性土)의 생성(生成)과 광물학적(鑛物學的) 특성(特性) -II. 점토광물(粘土鑛物)의 분포(分布) 및 생성(生成))

  • Jung, Pil-Kyun;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.168-178
    • /
    • 1994
  • Acid sulfate soils occur extensively in Gimhae area where they have been formed from the brackish alluvial sediments along the sea coast and river estuary. The strong acid environment enhances silicate weathering and thus affects the soil clay minerals. The minerals were identified through chemical, X-ray diffraction and thermal methods. The ratio of $SiO_2$ and $Al_2O_3$ in the clay fractions ranged from 3.14 to 3.77, indicating that the distribution of the clay minerals were 1 : 1 and 2 : 1 minerals. Cation exchange capacity in the clay fractions was low due to high contents of 1 : 1 minerals and hydroxy interlayered vermiculite(HIV). The B and C horizon rich in jarosite have large amounts of yellow streaks which reflect high content of $Fe_2O_3$ and $K_2O$. Vermiculite and illite were quantified from thermogravimetry(TG), kaolin minerals from both TG and differential thermal analysis(DTA), and HIV from X-ray diffraction analysis. The dominant clay minerals were kaolin minerals, vermiculite, illite and HIV. HIV considered to be formed, especially, in acid soil environments. The minor minerals were quarts, feldspar, jarosite, pyrite, hematite and goethite. Kaolin minerals were the most abundant clay minerals throughout the acid sulfate soil. Kaolin minerals, however, increased towards the top of horizons throughout the soils and HIV decreased towards the top of horizons in the soil of Gimhae series and Haecheog series. Alteration of HIV to kaolin minerals during weathering of low pH condition in deep soil horizons may explain the high quantities of kaolin minerals and the relatively low quantities of HIV in the soil at top horizons.

  • PDF

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF