• Title/Summary/Keyword: Thermoelectric thick films

Search Result 7, Processing Time 0.025 seconds

Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body

  • Cho, Han Ki;Kim, Da Hye;Sin, Hye Sun;Cho, Churl-Hee;Han, Seungwoo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.518-524
    • /
    • 2017
  • A flexible thermoelectric device using body heat has drawn attention as a power source for wearable devices. In this study, thermoelectric thick films were fabricated by cold pressing method using p-type antimony telluride and n-type bismuth telluride powders in accordance with specific loads. Thermoelectric thick films were denser and improved the electrical and thermoelectric properties while increasing the load of the cold pressing. The thickness of the specimen can be controlled by the amount of material; specimens were approximately 700 um in thickness. Flexible thermoelectric devices were manufactured by using the thermoelectric thick films on PI (Polyimide) substrate. The process is cheap, efficient, easy and scalable. Evaluation of power generation performance and flexibility on the fabricated flexible thermoelectric device was carried out. The flexible thermoelectric device has great flexibility and good performance and can be applied to wearable electronics as a power source.

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Characterization of n-type In3Sb1Te2 and p-type Ge2Sb2Te5 Thin Films for Thermoelectric Generators (박막 열전 발전 소자를 위한 In3Sb1Te2와 Ge2Sb2Te5 박막의 열전 특성에 관한 연구)

  • Kang, So-Hyeon;Seo, Hye-Ji;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • A thin film thermoelectric generator that consisted of 5 p/n pairs was fabricated with $1{\mu}m$-thick n-type $In_3Sb_1Te_2$ and p-type $Ge_2Sb_2Te_5$ deposited via radio frequency magnetron sputtering. First, $1{\mu}m$-thick GST and IST thin films were deposited at $250^{\circ}C$ and room temperature, respectively, via radio-frequency sputtering; these films were annealed from 250 to $450^{\circ}C$ via rapid thermal annealing. The optimal power factor was found at an annealing temperature of $400^{\circ}C$ for 10 min. To demonstrate thermoelectric generation, we measured the output voltage and estimated the maximum power of the n-IST/p-GST generator by imposing a temperature difference between the hot and cold junctions. The maximum output voltage and the estimated maximum power of the $1{\mu}m$-thick n-IST/p-GST TE generators are approximately 17.1 mV and 5.1 nW at ${\Delta}T=12K$, respectively.

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, M.J.;Kim, M.H.;Ryu, S.M.;Lee, H.S.;Lee, W.J.;Park, C.B.;Choi, W.S.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.1-2
    • /
    • 2008
  • Thick films of Carbon fiber were prepared by a heating element of plan shape made in Darin co.. We have investigated surface morphology of the specimen depending on second heat-treatment temperatures. X-ray diffraction patterns of Carbon fiber thick films show that the specimen heat treated below $600^{\circ}C$ was an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. Scanning electron microscope(SEM) image of Carbon fiber thick films of the specimen heat treated in between 900 and $1100^{\circ}C$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

In-Plane Thermoelectric Properties of InGaAlAs Thin Film with Embedded ErAs Nanoparticles (ErAs 나노입자가 첨가된 InGaAlAs 박막의 평면정렬방향으로의 열전특성)

  • Lee, Yong-Joong
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.456-460
    • /
    • 2011
  • Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Thick films of carbon fiber were prepared by a heating element of plan shape made in Darin co., We have investigated surface morphology of the specimen depending on heat-treatment temperatures. Scanning electron microscope(SEM) image of carbon fiber thick films of the specimen heat treated shows a grain growth at $1200^{\circ}C$ and becomes a poly-crystallization at $1350^{\circ}C$. The variation of resistivity at the thermally annealed specimen above $600^{\circ}C$ depends on type of the substrates. It may be due to a variation of film thickness and a difference of interfacial phenomena. A heating element of features was affected significantly by skin blood and quantity of heat of the body physiological function. After radiation of farinfrared for plate heating element, the function of biometric physiological is considered of skin blood flow and calorie which greatly affects on individuals. Electromagnetic wave was not influence on the body.

  • PDF

Synthesis of Li-doped NiO and its application of thermoelectric gas sensor (Li 도핑된 NiO 합성 및 열전식 수소센서에의 적용)

  • Han, Chi-Hwan;Han, Sang-Do;Kim, Byung-Kwon
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • Li-doped NiO was synthesized by molten salt method. $LiNO_3$-LiOH flux was used as a source for Li doping. $NiCl_2$ was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5:1 to 30:1 during the synthetic procedure and the Li doping amount of synthesized materials were found between 0.086-0.190 as a Li ion to Ni ion ratio. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies, however the lattice parameter decreased from 0.41769nm in pure NiO to 0.41271nm as Li doping amount increased. Hydrogen gas sensors were fabricated using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs $H_2$ concentration was checked up to 4% of $H_2$ in air (as higher concentrations above 4.65% are explosive in air) using Li doped NiO of Li ion/Ni ion=0.111 as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. There was minimum interference of other gases and hence $H_2$ gas can easily be detected.