• Title/Summary/Keyword: Thermoelectric Energy

Search Result 234, Processing Time 0.024 seconds

Design of a Thermal Energy Harvesting Circuit With MPPT Control (MPPT 기능을 갖는 열전 에너지 하베스팅 회로)

  • Kim, Su-jin;Park, Kum-young;Yoon, Eun-jung;Oh, Won-seok;Yu, chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.255-258
    • /
    • 2012
  • In this paper, with a thermoelectric device using the seebeck effect which generates electromotive force by temperature difference generates electric energy an energy harvesting circuit using MPPT(Maximun Power Point Traking) control is designed. After periodically sampling the open voltage of the thermoelectric device, the 1/2 voltage of open voltage which in a maximum power point is maintained through MPPT control circuit and harvested energy from thermoelectric device is delivered to load through a switch. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process and the chip area excluding pads is $1168.7{\mu}m{\times}541.3{\mu}m$.

  • PDF

Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator (열발전소자의 자동차 엔진 냉각시스템 적용 연구)

  • Park, Myungwhan;Hur, Taeyoung;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • Thermoelectric generator, which is known as using Seebeck effect, have been widely applied in many industrial parts, for instance, from submarine to equipments capable of producing hot or cooling water. Its usefulness was verified in terms of producing electric power using temperature difference and vice versa. Application on thermoelectric generator has been mainly forced on exhaust gas of automotive engine so far. In this study, the possibility was investigated whether electric power could be produced by using cooling water in automotive engine. As the result, it showed that electric power had differences depending on shapes of power auxiliary apparatus and, in this experiment, maximum of electric power was 1.5 voltage.

The Design of Oxide Module for High Temperature Thermoelectric Power Generation (고온 발전용 산화물 열전모듈의 설계)

  • Park, Jong-Won;Yoon, Sun-Ho;Cha, Jeong-Eui;Choi, Seung-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.93-100
    • /
    • 2008
  • The one and two pair of oxide modules for high temperature thermoelectric power generation were fabricated with $Ca_{2.7}Bi_{0.3}Co_4O_9$(p-type) and $Ca_{0.96}Bi_{0.04}Mn_{0.96}Nb_{0.04}O_3$(n-type) on $Al_2O_3$ substrate. For the optimizing of the design process, contact resistance was derived from the results of the one pair modules, and then the resistance of two pair modules were calculated to use the derived data. Those values were compared with the measured values for the optimizing of this design process. The resistance of calculated and measured two pairs modules was 0.956 $\Omega$ and 1.110 Q $\Omega$ $T_h$=833 K, respectively, the difference of resistance was about 0.15 $\Omega$. From the result, proposed design process is effective for high temperature thermoelectric oxide modules fabrication.

  • PDF

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

A Low-Voltage Self-Startup DC-DC Converter for Thermoelectric Energy Harvesting (열에너지 수확을 위한 저전압 자율시동 DC-DC 변환기)

  • Jeong, Hyun-Jin;Kim, Dong-Hoon;Kim, Hoe-Yeon;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.520-523
    • /
    • 2016
  • This paper describes a DC-DC converter with MPPT control for thermoelectric energy harvesting. The designed circuit converts low voltage harvested from a thermoelectric generator into higher voltage for powering a load. A start-up circuit supplies VDD to a controller, and the controller turns on and off a NMOS switch of a main-boost converter. The converter supplies the boosted voltage to the load through the switch operation. Bulk-driven comparators can do the comparison under low voltage condition and are used for voltage regulation. Also, bulk-driven comparators raise system's efficiency. A peak conversion efficiency of 76% is achieved. The proposed circuit is designed in a 0.35um CMOS technology and its functionality has been verified through simulations. The designed chip occupies $933um{\times}769um$.

  • PDF

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS (PDMS로 충진된 신축열전모듈의 신축특성과 발전특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2019
  • A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.

Structure and Characteristics of Tandem Solar Cell Composed of Dye-sensitized Solar Cell and Thermoelectric Generator (염료감응형 태양전지와 열전발전소자를 결합한 복합 태양전지의 구조 및 특성)

  • Lee, Dong-Yoon;Song, Jae-Sung;Lee, Won-Jae;Kim, In-Sung;Jeong, Soon-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • The tandem solar cell composed of a dye-sensitized solar cell (DSC) and a thermoelectric generator (TEG) was designed. In such new cell, the characteristics of DSC and TEG were investigated. DSC uses the wavelength range of 380∼750 nm and has the maximum efficiency of below 10 %. If the solar light transmitted through DSC can be converted to heat energy, TEG can generate electric energy using this heat energy. By this means, it is possible to utilize most of solar energy in the wavelength range of 350∼3000 nm for electric generation and it can be expected to obtain higher solar energy conversion efficiency exceeding the known limit of maximum efficiency. For this purpose we suggest the tandem solar cell constructed with DSC and TEG. In this structure, DSC has a carbon nanotube film as a counter electrode of DSC in order to collect the solar light and convert it to heat energy. We measured the I-V characteristics of DSC and TEG, assembled to the tandem cell. As a result, it was shown that DSC with carbon nanotube and TEG had the efficiency of 9.1 % and 6.2 %, respectively. From this results, it is expected that the tandem solar cell of the new design has the possibility of enhanced conversion efficiency to exceed above 15 %.

Study on Power Device Using Solar Collector (태양열집열기를 이용한 발전장치 연구)

  • Chun, Taekyu;Yang, Youngjoon
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.22-28
    • /
    • 2014
  • The thermoelectric generator using solar heat was applied to the device (heat-electricity conversion device) to produce small-scale electricity. The purpose of this study was to investigate the characteristics and performance of the device, which equipped with heat pipe as heat source. The experimental results showed that efficiency of circular single evacuated solar collector was higher 2.7 times than that of rectangular solar collector. Furthermore maximum power of 5 watt was obtained when 2 devices with series array were used and it could be more improved by increasing the number of device or measurement time.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.