• Title/Summary/Keyword: Thermoelectric Composites

Search Result 18, Processing Time 0.02 seconds

Evaluation on the thermoelectric energy harvesting performance of multi-walled carbon nanotube-embedded alkali activated slag composites (다중벽 탄소나노튜브 혼입 알칼리 활성 슬래그 복합재료의 열전 에너지 수확 성능평가)

  • Park, Hyeong-Min;Yang, Beomjo
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The thermoelectric characteristics of alkali activated slag composites containing multi-walled carbon nanotubes (MWCNT) was investigated in the present study. Three different MWCNT contents and exposed temperatures were considered, and their thermoelectric-related properties and internal structures were analyzed. It was found that the alkali activated slag composite with MWCNT 2.0 wt.% and the exposed temperature of 150℃ were the optimal condition to obtain the highest Seebeck coefficient and power factor. Based on the feasibility study, the extended size thermoelectric module with 130 elements was fabricated, and tested the electricity production capacity. Consequently, the present thermoelectric module produced 30.83 ㎼ of electricity at ∆T=178.4℃.

Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites (Graphite Nanosheets/PVDF 복합체의 열전 성질)

  • Yoon, Ho Dong;Nam, Seungwoong;Tu, Nguyen D.K.;Kim, Daeheum;Kim, Heesuk
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.638-641
    • /
    • 2013
  • GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.

A Study on Prediction of Effective Seebeck Coefficient of Thermoelectric Composites Using Modified Eshelby Model (수정된 에쉘비 모델을 이용한 열전 복합재의 등가지벡계수 예측에 대한 연구)

  • Lee, Jae-Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.961-966
    • /
    • 2013
  • A coupled governing equation of thermoelectric materials can be converted into an uncoupled form to predict the effective Seebeck coefficient of thermoelectric composites, where modified Eshelby model is adopted. The predicted results by the present approach for serial- and parallel-connected composites and composite with spherical inclusions are compared with theoretical and experimental results from literatures to be justified. It is shown that the predictions by the theoretical approaches coincide exactly and show in good agreement with the experiments.

Fabrication and Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites (탄소나노튜브가 분산된 비스무스 텔루라이드 기지 복합재료의 제조 및 열전특성)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Kim, Kyong-Ju;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Carbon-nanotube-embedded bismuth telluride (CNT/$Bi_2Te_3$) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with $Bi_2Te_3$ alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/$Bi_2Te_3$ composites by spark plasma sintering process at $350^{\circ}C$ for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the $Bi_2Te_3$ matrix. Seebeck coefficient of CNT/$Bi_2Te_3$ composites reveals that the composite has n-type semiconducting characteristics with values ranging $-55\;{\mu}V/K$ to $-95\;{\mu}V/K$ with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.

Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders (그래핀 산화물 분말 첨가에 의한 비스무스 텔루라이드 기지 복합재료의 열전에너지변환 특성 고찰)

  • Kim, Kyung Tae;Min, Taesik;Kim, Dong Won
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type $Bi_2Te_3$ based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type $Bi_2Te_3$ composite powder has a composition of $Bi_{0.5}Sb_{1.5}Te_3$ (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.

Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates

  • Lin, Yueguo;Lafarie-Frenot, Marie Christine;Bai, Jinbo;Gigliotti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.633-652
    • /
    • 2018
  • The present paper focuses on the development of a model for simulating the thermoelectric behavior of CNTs/CFRP Organic Matrix Composite (OMC) laminates for aeronautical applications. The model is developed within the framework of the thermodynamics of irreversible processes and implemented into commercial ABAQUS Finite Element software and validated by comparison with experimental thermoelectric tests on two types of composites materials, namely Type A with Carbon Nanotubes (CNT) and Type B without CNT. A simplified model, neglecting heat conduction, is also developed for simplifying the identification process. The model is then applied for FEM numerical simulation of the thermoelectric response of aircraft panel structures subjected to electrical loads, in order to discuss the potential danger coming from electrical solicitations. The structural simulations are performed on quasi-isotropic stacking sequences (QI) $[45/-45/90/0]_s$ using composite materials of type A and type B and compared with those obtained on plates made of metallic material (aluminum). For both tested cases-transit of electric current of intermediate intensity (9A) and electrical loading on panels made of composite material-higher heating intensity is observed in composites materials with respect to the corresponding metallic ones.

Photothermoelectric Effect of Graphene-polyaniline Composites (그래핀-폴리 아닐린 복합체의 광열전 효과 연구)

  • Choi, Jongwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.434-439
    • /
    • 2021
  • Graphene and polyaniline with thermoelectric properties are one of the potential substitutes for inorganic materials for flexible thermoelectric applications. In this study, we studied the photo-induced thermoelectric effect of graphene-polyaniline composites. The graphene-polyaniline composites were synthesized by introducing an amine functional group to graphene oxide for covalently connecting graphene and polyaniline, reducing the graphene oxide, and then polymerizing the graphene oxide with aniline. Graphene-polyaniline composites were prepared by changing the aniline contents in order to expect an optimal photothermoelectric effect, and their structural properties were confirmed through FT-IR and Raman analysis. The photocurrent and photovoltage characteristics were analyzed by irradiating light asymmetrically without an external bias and the current and voltage with various aniline contents. While the photocurrent trends to the electrical conductivity of the graphene-polyaniline composites, the photovoltage was related to the temperature change of the graphene-polyaniline composite, which was converted into thermal energy by light.

Stretchable Carbon Nanotube Composite Clays with Electrical Enhancers for Thermoelectric Energy Harvesting E-Skin Patches

  • Tae Uk Nam;Ngoc Thanh Phuong Vo;Jun Su Kim;Min Woo Jeong;Kyu Ho Jung;Alifone Firadaus Nurwicaksono Adi;Jin Young Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Electronic skin (e-skin), devices that are mounted on or attached to human skin, have advanced in recent times. Yet, the development of a power supply for e-skin remains a challenge. A stretchable thermoelectric generator is a promising power supply for the e-skin patches. It is a safe and semi-permanent energy harvesting device that uses body heat for generating power. Carbon nanotube (CNT) clays are used in energy-harvesting e-skin patches. In this study, we report improved thermoelectric performance of CNT clays by using chemical doping and physical blending of thermoelectric enhancers. The n-type and p-type thermoelectric enhancers increase electrical conductivity, leading to increased power factors of the thermoelectric CNT clays. The blend of CNT clays and enhancers is intrinsically stretchable up to 50% while maintaining its thermoelectric property.

Reduction of Thermal Conductivity Through Complex Microstructure by Dispersion of Carbon Nanofiber in p-Type Bi0.5Sb1.5Te3 Alloys

  • P. Sharief;B. Madavali;Y. Sohn;J.H. Han;G. Song;S.H. Song;S.J. Hong
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.803-808
    • /
    • 2021
  • The influence of nano dispersion on the thermoelectric properties of Bi2Te3 was actively investigating to wide-spread thermoelectric applications. Herein this report, we have systematically controlled the microstructure of Bi0.5Sb1.5Te3 (BST) alloys through the incorporation of carbon nanofiber (CNF), and studied their effect on thermoelectric properties, and mechanical properties. The BST/x-CNF (x-0, 0.05, 0.1, 0.2 wt.%) composites powder was fabricated using high energy ball milling, and subsequently consolidated the powder using spark plasma sintering. The identification of CNF in bulk composites was analyzed in Raman spectroscopy and corresponding CNF peaks were recognized. The BST matrix grain size was greatly reduced with CNF dispersion and consistently decreased along CNF percentage. The electrical conductivity was reduced and Seebeck coefficient varied in small-scale by embedding CNF. The thermal conductivity was progressively diminished, obtained lattice thermal conductivity was lowest compared to bare sample due to induced phonon scattering at interfaces of secondary phases as well as highly dense fine grain boundaries. The peak ZT of 0.95 achieved for 0.1 wt.% dispersed BST/CNF composites. The Vickers hardness value of 101.8 Hv was obtained for the BST/CNF composites.

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.