• Title/Summary/Keyword: Thermoelastic stress

Search Result 140, Processing Time 0.02 seconds

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M.Kh.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.579-590
    • /
    • 2020
  • This paper's objective is to investigate the effect of gravity on a micropolar thermoelastic medium with voids. The problem is assessed according to the three-phase-lag model. An analysis of the resulting non-dimensional displacement, temperature variation, and internal stress of the study material is carried out and presented graphically. The non-dimensional displacement, temperature, micro-rotation, the change in the volume fraction field and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by different theories for different values of gravity, the phase-lag of the heat flux and the phase-lag of the temperature gradient. The numerical results reveal that gravity and relaxation times have a significant influence on the distribution of the field quantities. Some notable insights of interest are deduced from the investigation.

Numerical Analysis of Nonlinear Thermoelastic Stress for Rectangular Thin Plate (사각형 박판의 비선형 열탄성 응력 수치해석)

  • Kim Chi-Kyung;Kim Sung-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.155-160
    • /
    • 2004
  • A simply supported rectangular thin plate with temperature distribution varying over the thickness is analyzed. Since the thermal deflections are large compared to the plate thickness during bending and membrane stresses are developed md as such a nonlinear stress analysis is necessary. For the geometrically nonlinear, large deflection behavior of the plate, the classical von Karman equations are used. These equations are solved numerically by using the finite difference method. An iterative technique is employed to solve these quasi-linear algebraic equations. The results obtained from the suggested method are presented and discussed.

Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine (고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.128-144
    • /
    • 1998
  • The BEM for linear elastic stress analysis is applied to the highly rotating axisymmetric body problem which also involves the thermoelastic effects due to steady-state thermal conduction. The axisymmetric BEM formulation is briefly summarized and an alternative approach for transforming the volume integrals associated with such body force kernels into equivalent boundary integrals is described in a way of using the concept of inner product and vector identity. A discretization scheme for higher order BE is outlined for numerical treatment of the resulting boundary integral equations, and it is consequently illustrated by determining the stress distributions of the turbine rotor disk of the small turbojet engine(ADD 500) for which a FEM stress solution has been furnished by author.

  • PDF

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Thermal bending analysis of functionally graded thick sandwich plates including stretching effect

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Smain Bezzina;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.373-384
    • /
    • 2023
  • The main objective of this research work is to present analytical solutions for the thermoelastic bending analysis of sandwich plates made of functionally graded materials with an arbitrary gradient. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The transverse shear and normal strain and stress effects on thermoelastic bending of such sandwich plates are considered. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The results of the shear deformation theories are compared together. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated.

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • 김동원;이낙규;나경환;권동일
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 2004
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film / substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 $\mu\textrm{m}$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI...

  • PDF

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.