• 제목/요약/키워드: Thermoelastic properties

검색결과 56건 처리시간 0.056초

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

유한요소법을 이용한 디스크 브레이크의 과도기 열탄성 해석 (Transient Thermoelnstic Analysis of Disk Brakes Using Finite Element Method)

  • 최지훈;김도형;이인;차희범;강민구
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.160-167
    • /
    • 2002
  • The transient thermoelastic analysis of automotive disk brakes with frictional contact is performed by using the finite element method. To analyze the thermoelastic behaviors occurring in disk brakes, the coupled heat conduction and elastic equations are solved. The fully implicit transient scheme is used to improve the computation accuracy at every time step. The numerical results of the thermoelastic behaviors are obtained during the repeated braking condition. The computational results show that the thermoelastic instability(TEI) phenomenon(the growth of non-uniformities in contact pressure) occurs in disk brakes. Also, the effect of material properties on the thermoelastic behaviors is investigated to facilitate the conceptual design of the brake system.

탄소/탄소 브레이크 디스크의 과도기 열탄성 해석과 3차원 응력해석 (Transient Thermoelastic Analysis and 3 Dimensional Stress Analysis of Carbon/Carbon Brake Disks)

  • 오세희;유재석;김천곤;홍창선;김광수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.147-152
    • /
    • 2000
  • This paper presents the thermoelastic analysis and 3-D failure analysis of the carbon/carbon brake disk. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermoelastic analysis and 3-D stress analysis for the brake disk. The gap between rotor clip and clip retainer was an important parameter in the loading transfer mechanism of the rotor. The change of gap was considered separating the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, the clip retainers and rivets were excluded from the rotor analysis model. The disk was modeled by using the cyclic symmetry condition and the contact problem between the rotor disk and rotor clip was considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed.

  • PDF

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

경사기능재료 사각 판의 열 탄성 변형과 응력 해석 (Thermoelastic deformation and stress analysis of a FGM rectangular Plate)

  • 김귀섭
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.34-41
    • /
    • 2003
  • 경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3차원 정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면의(out-plane) 변형과 평면내(in-plane) 힘에 의해 유도되었다. 굽힙과 평면내 힘으로 인한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석되었다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화 되었다. 수치예제가 수행되었으며, 경사기능재료의 물성치가 판의 열탄성 거동에 미치는 영향이 검토되었다.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat

  • Abouelregal, A.E.;Zenkour, A.M.
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.451-460
    • /
    • 2017
  • This work produces a new model of nonlocal thermoelastic nanobeams of temperature-dependent physical properties. A nanobeam is excited by harmonically varying heat and subjected to an exponential decaying time varying load. The analytical solution is obtained by means of Laplace transform method in time domain. Inversions of transformed solutions have been preceded by using calculus of residues. Effects of nonlocal parameter, variability thermal conductivity, varying load and angular frequency of thermal vibration on studied fields of nanobeam are investigated and discussed.

다공성 금속의 성형공정 후 열탄성 계수 (Thermoelastic Properties of Porous Metals After Material Forming Processes)

  • 이종원;김진원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF