• 제목/요약/키워드: Thermoelastic

검색결과 296건 처리시간 0.03초

(100) 실리콘 웨이퍼에 대한 열탄성모사 (A thermoelastic simulation on the (100) Si-wafer)

  • Doo Jin Choi;Hyun Jung Woo
    • 한국결정성장학회지
    • /
    • 제4권1호
    • /
    • pp.71-75
    • /
    • 1994
  • 본 연구에서는 (100) 배향된 단결정 실리콘 웨이퍼의 열탄성응력지수, 열응력과 임계소성변형 온도와의 관계를 모사하였다. 열탄성웅력지수는 <110> 방향에서 최대값을, <100> 방향에서 최소값을 보여주었다. 그리고, 열탄성응력지수로 부터 유도된 열응력과 임계 소성변형 온도의 모사로 부터, 실리콘 웨이퍼가 1000K 이상에서 소성변형될 수 있음을 예측할 수 있었다.

  • PDF

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

탄소/탄소 브레이크 디스크의 과도기 열탄성 해석과 3차원 응력해석 (Transient Thermoelastic Analysis and 3 Dimensional Stress Analysis of Carbon/Carbon Brake Disks)

  • 오세희;유재석;김천곤;홍창선;김광수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.147-152
    • /
    • 2000
  • This paper presents the thermoelastic analysis and 3-D failure analysis of the carbon/carbon brake disk. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermoelastic analysis and 3-D stress analysis for the brake disk. The gap between rotor clip and clip retainer was an important parameter in the loading transfer mechanism of the rotor. The change of gap was considered separating the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, the clip retainers and rivets were excluded from the rotor analysis model. The disk was modeled by using the cyclic symmetry condition and the contact problem between the rotor disk and rotor clip was considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed.

  • PDF

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

경사기능재료에서의 열탄성 불안정성 (Thermoelastic Instability in Functionally Graded Materials)

  • 장용훈;안성호;이승욱
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

Time harmonic interactions in fractional thermoelastic diffusive thick circular plate

  • Lata, Parveen
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.39-53
    • /
    • 2019
  • Here in this investigation, a two-dimensional thermoelastic problem of thick circular plate of finite thickness under fractional order theory of thermoelastic diffusion has been considered in frequency domain. The effect of frequency in the axisymmetric thick circular plate has been depicted. The upper and lower surfaces of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is found by using Hankel transform techniques. The analytical expressions of displacements, stresses and chemical potential, temperature change and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect frequency has been shown on the various components.

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source

  • Lata, Parveen;Kaur, Iqbal
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.83-102
    • /
    • 2019
  • The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen;Kaur, Iqbal
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.191-218
    • /
    • 2019
  • The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.