• Title/Summary/Keyword: Thermodynamic function

Search Result 167, Processing Time 0.02 seconds

Effect of n-Butanol on the Mixed Micellar Properties of Sodium Dodecylsulfate(SDS) with Sodium Dodecylbenzenesulfonate(DBS) (Sodium Dodecylsulfate(SDS)와 Sodium Dodecylbenzenesulfonate(DBS)의 혼합미셀화에 미치는 n-Butanol의 효과)

  • 이병환
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.12-17
    • /
    • 1997
  • The critical micelle concentrations(CMC*) and the counterion binding constants(B) in a micellar state of the mixed surfactant systems of sodium dodecylsulfate(SDS) with sodium dodecylbenzenesulfonate(DBS) at 25℃ in pure water and in aqueous solutions of n-butanol were determined as a function of α1 (the overall mole fraction of SDS) by the use of electric conductivity method. Various thermodynamic parameters(Xi, γi, Ci, aiM, β, ΔHmix and ΔGm0 for the micellization of SDS/DBS mixtures were calculated and analyzed by means of the equations derived from the nonideal mixed micelle model. The effect of n-butanol on the mixed micellization of SDS/DBS mixtures have been measured and analyzed by comparing the values of the thermodynamic parameters in pure water with those in aqueous solutions of n-butanol(0.1 M, 0.2 M, and 0.3 M).

  • PDF

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • Seo Seong-Hyeon;Han Yeoung-Min;Kim Sung-Ku;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.118-122
    • /
    • 2006
  • For the development of a gas generator of a liquid rocket engine, the prediction of thermodynamic properties of combustion gas with respect to a propellant mixture ratio becomes critical. The present study focuses on the temperature measurement of exit combustion gas as a function of a mixture ratio through combustion tests of a fuel-rich gas generator propelled by Lox/Jet A-1. The measurement of combustion dynamic and static pressures allowed indirect estimation of thermodynamic properties like specific heat ratio, gas constant, and constant pressure specific heat. Comparing the results with empirical prediction through an interpolation reveals that the interpolation method calibrated using temperature results can be utilized as an effective tool for the design of a fuel-rich gas generator.

  • PDF

Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging (전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구)

  • 정상원;김종훈;김현득;이혁모
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • In soldering of electronic packaging, the research on substituting lead-free solder materials for Pb-Sn alloys has become active due to environmental and health concerns over the use of lead. The reliability of the solder joint is very important in the development of solder materials and it is known that it is related to wettability of the solder over the substrate and microstructural evolution during soldering. It is also highly affected by type and extent of the interfacial reaction between solder and substrate and therefore, it is necessary to understand the interfacial reaction between solder and substrate completely. In order to predict the intermetallic compound (IMC) phase which forms first at the substrate/solder interface during the soldering process, a thermodynamic methodology has been suggested. The activation energy for the nucleation of each IMC phases is represented by a function of the interfacial energy and the driving force for phase formation. From this, it is predicted that the IMC phase with the smallest activation energy forms first. The grain morphology of the IMC at the solder joint is also explained by the calculations which use the energy. The Jackson parameter of the IMC grain with a rough surface is smaller than 2 but it is larger than 2 in the case of faceted grains.

  • PDF

Thermodynamic Study on the Micellar Properties of DBS/Brij 30 Mixed Surfactant Systems (DBS/Brij 30 혼합계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Byeong-Hwan;Park, In-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.190-195
    • /
    • 2006
  • The critical micelle concentrations (CMC) and the counter ion binding constants (B) in a micellar state of the mixed surfactant systems of sodium dodecylbenzenesulfonate (DBS) with polyoxyethylene(4) lauryl ether (Brij 30) in water were determined as a function of 1 (the overall mole fraction of DBS) by the use of electric conductivity method and surface tensiometer method from 288 K to 308 K. Various thermodynamic parameters (Smo, Hmo, and Gmo) for the micellization of DBS/Brij 30 mixtures were calculated and analyzed from the temperature dependence of CMC values. The measured values of Gomare all negative but the values of Smo are positive in the whole measured temperature region. On the other hand, the values of Hmo are positive or negative, depending on the measured temperature and 1.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in NpT Ensemble: Thermodynamic, Structural, and Dynamic Properties

  • Kim, Ja-Hun;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.447-453
    • /
    • 2002
  • In this paper we have presented the results of thermodynamic, structural, and dynamic properties of model systems for liquid benzene, toluene and p-xylene in an isobaric-isothermal (NpT) ensemble at 283.15, 303.15, 323.15, and 343.15 K using molecular dynamics (MD) simulation. This work is initiated to compensate for our previous canonical (NVT) ensemble MD simulations [Bull. Kor. Chem. Soc. 2001, 23, 441] for the same systems in which the calculated pressures were too low. The calculated pressures in the NpT ensemble MD simulations are close to 1 atm and the volume of each system increases with increasing temperature. The first and second peaks in the center of mass g(r) diminish gradually and the minima increase as usual for the three liquids as the temperature increases. The three peaks of the site-site gC-C(r) at 283.15 K support the perpendicular structure of nearest neighbors in liquid benzene. Two self-diffusion coefficients of liquid benzene via the Einstein equation and via the Green-Kubo relation are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene and p-xylene are in accord with the trend that the self-diffusion coefficient decreases with increasing number of methyl group. The friction constants calculated from the force auto-correlation (FAC) function with the assumption that the fast random force correlation ends at time which the FAC has the first negative value give a correct qualitative trends: decrease with increase of temperature and increase with the number of methyl group. The friction constants calculated from the FAC's are always less than those obtained from the friction-diffusion relation which reflects that the random FAC decays slower than the total FAC as described by Kubo [Rep. Prog. Phys. 1966, 29, 255].

Effect of n-Butanol on the Mixed Micellization of DPC with CDEAB (DPC와 CDEAB의 혼합마이셀화에 미치는 n-부탄올의 효과)

  • Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.236-242
    • /
    • 2004
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the Dodecylpyridinium chloride (DPC) with the Cetyldimethylethylammonium bromide (CDEAB) at 25$^{\circ}C$ in aqueous solutions of n-butanol were determined as a function of ${\alpha}_1$ (the overall mole fraction of DPC) by the use of electric conductivity method. Various thermodynamic parameters (($X_i,\;{\gamma}_i,\;C_i,\;a^M_i,\;{\beta},\;and {\Delta}H_{mix})$were calculated by means of the equations derived from the nonideal mixed micellar model. The effect of n-butanol on the mixed micellization of the DPC/CDEAB mixtures has been also studied by analyzing the measured and calculated thermodynamic parameters (CMC, B 및 $;{\Delta}G_o\;^m$).

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon (활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.255-261
    • /
    • 2016
  • Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor ($R_L=0.202{\sim}0.243$), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

An analytic solution for the stirling engines with saw-toothed piston motions in adiabatic cylinders (단열실린더내에서 톱날파형 피스톤운동을 하는 스터링기관에 대한 해석적인 해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1197-1205
    • /
    • 1988
  • An analytical method to predict qualitative performance characteristics of the Stirling Engines in the preliminary design stages is investigated. Both the expansion and the compression cylinder are treated as adiabatic and piston motions are approximated as saw-toothed waves. Basic equations which were originally proposed by Finkelstein consist of mass conservation and energy balances for each adiabatic cylinder. The approximation on piston motions and physical conditions make it possible to divide an engine cycle into four fundamental processes. In each process, first, pressure can be expressed as a function of the crank angle by solving a nonlinear first order ordinary differential equation and other thermodynamic variables are determined in turn. Application of the cyclic steady condition to the whole processes can complete a cycle. Also, further analysis results in analytic expressions for cyclic work and heat transfer in terms of the engine parameters and thermodynamic variables at boundary points. The results are expected useful as a quick reference for the engine performances. Finally, the present method can be applied to the other adiabatic analyses on the Stirling Engines with piece wise linear piston motions, if mass variations are predictable.